You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
5.8 KiB
150 lines
5.8 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from .optimizer import Optimizer
|
|
from ..fluid import core
|
|
from ..fluid import framework
|
|
from ..fluid.framework import Variable, name_scope
|
|
|
|
__all__ = ["Momentum"]
|
|
|
|
|
|
class Momentum(Optimizer):
|
|
"""
|
|
|
|
Simple Momentum optimizer with velocity state
|
|
|
|
This optimizer has a flag for Nestrov Momentum.
|
|
|
|
The update equations are as follows:
|
|
|
|
.. math::
|
|
|
|
& velocity = mu * velocity + gradient
|
|
|
|
& if (use\_nesterov):
|
|
|
|
&\quad param = param - (gradient + mu * velocity) * learning\_rate
|
|
|
|
& else:
|
|
|
|
&\quad param = param - learning\_rate * velocity
|
|
|
|
Parameters:
|
|
|
|
learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
|
|
It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
|
|
momentum (float): Momentum factor. The default value is 0.9.
|
|
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
|
|
This parameter is required in dygraph mode. \
|
|
The default value is None in static mode, at this time all parameters will be updated.
|
|
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
|
|
It canbe a float value as coeff of L2 regularization or \
|
|
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
|
|
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
|
|
the regularization setting here in optimizer will be ignored for this parameter. \
|
|
Otherwise, the regularization setting here in optimizer will take effect. \
|
|
Default None, meaning there is no regularization.
|
|
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
|
|
some derived class of ``GradientClipBase`` . There are three cliping strategies
|
|
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
|
|
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
|
|
name (str, optional): The default value is None. Normally there is no need for user
|
|
to set this property. For more information, please refer to
|
|
:ref:`api_guide_Name` .
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import numpy as np
|
|
paddle.disable_static()
|
|
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
|
|
linear = paddle.nn.Linear(10, 10)
|
|
inp = paddle.to_tensor(inp)
|
|
out = linear(inp)
|
|
loss = paddle.mean(out)
|
|
beta1 = paddle.to_tensor([0.9], dtype="float32")
|
|
beta2 = paddle.to_tensor([0.99], dtype="float32")
|
|
momentum = paddle.optimizer.Momentum(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
|
|
back = out.backward()
|
|
momentum.step()
|
|
momentum.clear_grad()
|
|
"""
|
|
_velocity_acc_str = "velocity"
|
|
|
|
def __init__(self,
|
|
learning_rate=0.001,
|
|
momentum=0.9,
|
|
parameters=None,
|
|
use_nesterov=False,
|
|
weight_decay=None,
|
|
grad_clip=None,
|
|
name=None):
|
|
if learning_rate is None:
|
|
raise ValueError("learning_rate is not set")
|
|
if momentum is None:
|
|
raise ValueError("momentum is not set")
|
|
super(Momentum, self).__init__(
|
|
learning_rate=learning_rate,
|
|
parameters=parameters,
|
|
weight_decay=weight_decay,
|
|
grad_clip=grad_clip,
|
|
name=name)
|
|
self.type = "momentum"
|
|
self._momentum = momentum
|
|
self._use_nesterov = bool(use_nesterov)
|
|
|
|
def _create_accumulators(self, block, parameters):
|
|
assert isinstance(block, framework.Block)
|
|
|
|
for p in parameters:
|
|
self._add_accumulator(self._velocity_acc_str, p)
|
|
|
|
def _append_optimize_op(self, block, param_and_grad):
|
|
assert isinstance(block, framework.Block)
|
|
|
|
velocity_acc = self._get_accumulator(self._velocity_acc_str,
|
|
param_and_grad[0])
|
|
lr = self._create_param_lr(param_and_grad)
|
|
|
|
if framework.in_dygraph_mode():
|
|
_, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
|
|
velocity_acc, lr, param_and_grad[0],
|
|
velocity_acc, 'mu', self._momentum,
|
|
'use_nesterov', self._use_nesterov)
|
|
return None
|
|
|
|
attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
|
|
inputs = {
|
|
"Param": [param_and_grad[0]],
|
|
"Grad": [param_and_grad[1]],
|
|
"Velocity": [velocity_acc],
|
|
"LearningRate": [lr]
|
|
}
|
|
|
|
outputs = {
|
|
"ParamOut": [param_and_grad[0]],
|
|
"VelocityOut": [velocity_acc]
|
|
}
|
|
# create the momentum optimize op
|
|
momentum_op = block.append_op(
|
|
type=self.type,
|
|
inputs=inputs,
|
|
outputs=outputs,
|
|
attrs=attrs,
|
|
stop_gradient=True)
|
|
|
|
return momentum_op
|