You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
137 lines
5.4 KiB
137 lines
5.4 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from .optimizer import Optimizer
|
|
from ..fluid import core
|
|
from ..fluid import framework
|
|
from ..fluid.framework import Variable
|
|
|
|
__all__ = ["Adagrad"]
|
|
|
|
|
|
class Adagrad(Optimizer):
|
|
"""
|
|
The Adaptive Gradient optimizer (Adagrad for short) use an optimization described
|
|
in paper: `Adaptive Subgradient Methods for Online Learning and
|
|
Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.
|
|
|
|
The parameter ``param_out`` update rule with gradient ``grad``:
|
|
|
|
.. math::
|
|
|
|
moment\_out &= moment + grad * grad
|
|
|
|
param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
|
|
|
|
|
|
The original paper does not have the ``epsilon`` attribute. It is added here
|
|
in our implementation as also proposed `Per-parameter adaptive learning rate
|
|
methods <http://cs231n.github.io/neural-networks-3/#ada>`_
|
|
for numerical stability to avoid the division by zero error.
|
|
|
|
Args:
|
|
learning_rate (float|Tensor): The learning rate used to update ``Parameter``.
|
|
It can be a float value or a ``Variable`` with a float type.
|
|
epsilon (float, optional): A small float value for numerical stability.
|
|
The default value is 1e-06.
|
|
parameters (list, optional): List of ``Tensor`` to update to minimize ``loss``. \
|
|
This parameter is required in dygraph mode. \
|
|
The default value is None in static mode, at this time all parameters will be updated.
|
|
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
|
|
It canbe a float value as coeff of L2 regularization or \
|
|
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
|
|
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
|
|
the regularization setting here in optimizer will be ignored for this parameter. \
|
|
Otherwise, the regularization setting here in optimizer will take effect. \
|
|
Default None, meaning there is no regularization.
|
|
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
|
|
some derived class of ``GradientClipBase`` . There are three cliping strategies,
|
|
ClipGradByGlobalNorm, ClipGradByNorm and ClipGradByValue. Default None,
|
|
meaning there is no gradient clipping.
|
|
name (str, optional): Normally there is no need for user to set this property.
|
|
For more information, please refer to :ref:`api_guide_Name`.
|
|
The default value is None.
|
|
initial_accumulator_value (float, optional): Initial value for moment accumulator.
|
|
The default value is 0.0.
|
|
|
|
Examples:
|
|
.. code-block:: python
|
|
|
|
import paddle
|
|
import numpy as np
|
|
|
|
paddle.disable_static()
|
|
inp = paddle.rand(shape=[10, 10])
|
|
linear = paddle.nn.Linear(10, 10)
|
|
out = linear(inp)
|
|
loss = paddle.mean(out)
|
|
adagrad = paddle.optimizer.Adagrad(learning_rate=0.1,
|
|
parameters=linear.parameters())
|
|
out.backward()
|
|
adagrad.step()
|
|
adagrad.clear_grad()
|
|
|
|
"""
|
|
_moment_acc_str = "moment"
|
|
|
|
def __init__(self,
|
|
learning_rate,
|
|
epsilon=1.0e-6,
|
|
parameters=None,
|
|
weight_decay=None,
|
|
grad_clip=None,
|
|
name=None,
|
|
initial_accumulator_value=0.0):
|
|
assert learning_rate is not None
|
|
assert epsilon is not None
|
|
super(Adagrad, self).__init__(
|
|
learning_rate=learning_rate,
|
|
parameters=parameters,
|
|
weight_decay=weight_decay,
|
|
grad_clip=grad_clip,
|
|
name=name)
|
|
self.type = "adagrad"
|
|
self._epsilon = epsilon
|
|
self.initial_accumulator_value = initial_accumulator_value
|
|
|
|
def _create_accumulators(self, block, parameters):
|
|
assert isinstance(block, framework.Block)
|
|
|
|
for p in parameters:
|
|
self._add_accumulator(
|
|
self._moment_acc_str,
|
|
p,
|
|
fill_value=self.initial_accumulator_value)
|
|
|
|
def _append_optimize_op(self, block, param_and_grad):
|
|
assert isinstance(block, framework.Block)
|
|
|
|
moment_acc = self._get_accumulator(self._moment_acc_str,
|
|
param_and_grad[0])
|
|
# Create the adagrad optimizer op
|
|
adagrad_op = block.append_op(
|
|
type=self.type,
|
|
inputs={
|
|
"Param": param_and_grad[0],
|
|
"Grad": param_and_grad[1],
|
|
"Moment": moment_acc,
|
|
"LearningRate": self._create_param_lr(param_and_grad)
|
|
},
|
|
outputs={"ParamOut": param_and_grad[0],
|
|
"MomentOut": moment_acc},
|
|
attrs={"epsilon": self._epsilon},
|
|
stop_gradient=True)
|
|
|
|
return adagrad_op
|