You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
2.7 KiB
90 lines
2.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function, division
|
|
|
|
import unittest
|
|
import numpy as np
|
|
|
|
import paddle
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestComplexAbsOp(OpTest):
|
|
def setUp(self):
|
|
paddle.enable_static()
|
|
self.op_type = "abs"
|
|
self.dtype = np.float64
|
|
self.shape = (2, 3, 4, 5)
|
|
self.init_input_output()
|
|
self.init_grad_input_output()
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
|
|
self.outputs = {'Out': self.out}
|
|
|
|
def init_input_output(self):
|
|
self.x = np.random.random(self.shape).astype(
|
|
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
|
|
self.out = np.abs(self.x)
|
|
|
|
def init_grad_input_output(self):
|
|
self.grad_out = np.ones(self.shape, self.dtype)
|
|
self.grad_x = self.grad_out * (self.x / np.abs(self.x))
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(
|
|
['X'],
|
|
'Out',
|
|
user_defined_grads=[self.grad_x],
|
|
user_defined_grad_outputs=[self.grad_out])
|
|
|
|
|
|
class TestComplexAbsOpZeroValues(OpTest):
|
|
def setUp(self):
|
|
paddle.enable_static()
|
|
self.op_type = "abs"
|
|
self.dtype = np.float64
|
|
self.shape = (2, 3, 4, 5)
|
|
self.init_input_output()
|
|
self.init_grad_input_output()
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
|
|
self.outputs = {'Out': self.out}
|
|
|
|
def init_input_output(self):
|
|
self.x = np.zeros(self.shape).astype(self.dtype) + 1J * np.zeros(
|
|
self.shape).astype(self.dtype)
|
|
self.out = np.abs(self.x)
|
|
|
|
def init_grad_input_output(self):
|
|
self.grad_out = np.ones(self.shape, self.dtype)
|
|
self.grad_x = np.zeros(self.shape, self.dtype)
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(
|
|
['X'],
|
|
'Out',
|
|
user_defined_grads=[self.grad_x],
|
|
user_defined_grad_outputs=[self.grad_out])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|