You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
284 lines
8.0 KiB
284 lines
8.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle.fluid.proto import data_feed_pb2
|
|
from google.protobuf import text_format
|
|
from . import core
|
|
__all__ = ['DatasetFactory']
|
|
|
|
|
|
class DatasetFactory(object):
|
|
"""
|
|
DatasetFactory is a factory which create dataset by its name,
|
|
you can create "QueueDataset" or "InMemoryDataset",
|
|
the default is "QueueDataset".
|
|
|
|
Example:
|
|
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init
|
|
"""
|
|
pass
|
|
|
|
def create_dataset(self, datafeed_class="QueueDataset"):
|
|
"""
|
|
Create "QueueDataset" or "InMemoryDataset",
|
|
the default is "QueueDataset".
|
|
"""
|
|
try:
|
|
dataset = globals()[datafeed_class]()
|
|
return dataset
|
|
except:
|
|
raise ValueError("datafeed class %s does not exist" %
|
|
datafeed_class)
|
|
|
|
|
|
class DatasetBase(object):
|
|
"""
|
|
Base dataset class
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init
|
|
"""
|
|
# define class name here
|
|
# to decide whether we need create in memory instance
|
|
self.proto_desc = data_feed_pb2.DataFeedDesc()
|
|
self.proto_desc.pipe_command = "cat"
|
|
self.dataset = core.Dataset("MultiSlotDataset")
|
|
self.thread_num = 0
|
|
|
|
def set_pipe_command(self, pipe_command):
|
|
"""
|
|
Set pipe command of current dataset
|
|
A pipe command is a UNIX pipeline command that can be used only
|
|
|
|
Example:
|
|
>>> dataset.set_pipe_command("python my_script.py")
|
|
|
|
Args:
|
|
pipe_command: pipe command
|
|
|
|
"""
|
|
self.proto_desc.pipe_command = pipe_command
|
|
|
|
def set_batch_size(self, batch_size):
|
|
"""
|
|
Set batch size. Will be effective during training
|
|
|
|
Example:
|
|
>>> dataset.set_batch_size(128)
|
|
|
|
Args:
|
|
batch_size: batch size
|
|
|
|
"""
|
|
self.proto_desc.batch_size = batch_size
|
|
|
|
def set_thread(self, thread_num):
|
|
"""
|
|
Set thread num, it is the num of readers.
|
|
|
|
Example:
|
|
>>> dataset.set_thread(12)
|
|
|
|
Args:
|
|
thread_num: thread num
|
|
"""
|
|
self.dataset.set_thread_num(thread_num)
|
|
self.thread_num = thread_num
|
|
|
|
def set_filelist(self, filelist):
|
|
"""
|
|
Set file list in current worker.
|
|
|
|
Example:
|
|
>>> dataset.set_filelist(['a.txt', 'b.txt'])
|
|
|
|
Args:
|
|
filelist: file list
|
|
"""
|
|
self.dataset.set_filelist(filelist)
|
|
|
|
def set_use_var(self, var_list):
|
|
"""
|
|
Set Variables which you will use.
|
|
|
|
Example:
|
|
>>> dataset.set_use_var([data, label])
|
|
|
|
Args:
|
|
var_list: variable list
|
|
"""
|
|
multi_slot = self.proto_desc.multi_slot_desc
|
|
for var in var_list:
|
|
slot_var = multi_slot.slots.add()
|
|
slot_var.is_used = True
|
|
slot_var.name = var.name
|
|
if var.lod_level == 0:
|
|
slot_var.is_dense = True
|
|
if var.dtype == core.VarDesc.VarType.FP32:
|
|
slot_var.type = "float"
|
|
elif var.dtype == core.VarDesc.VarType.INT64:
|
|
slot_var.type = "uint64"
|
|
else:
|
|
raise ValueError(
|
|
"Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
|
|
)
|
|
|
|
def set_hdfs_config(self, fs_name, fs_ugi):
|
|
"""
|
|
Set hdfs config: fs name ad ugi
|
|
|
|
Example:
|
|
>>> dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
|
|
|
|
Args:
|
|
fs_name: fs name
|
|
fs_ugi: fs ugi
|
|
"""
|
|
self.dataset.set_hdfs_config(fs_name, fs_ugi)
|
|
|
|
def _prepare_to_run(self):
|
|
"""
|
|
Set data_feed_desc before load or shuffle,
|
|
user no need to call this function.
|
|
"""
|
|
self.dataset.set_data_feed_desc(self.desc())
|
|
|
|
def desc(self):
|
|
"""
|
|
Returns a protobuf message for this DataFeedDesc
|
|
|
|
Example:
|
|
>>> print(dataset.desc())
|
|
|
|
Returns:
|
|
A string message
|
|
"""
|
|
return text_format.MessageToString(self.proto_desc)
|
|
|
|
|
|
class InMemoryDataset(DatasetBase):
|
|
"""
|
|
InMemoryDataset, it will load data into memory
|
|
and shuffle data before training
|
|
|
|
Example:
|
|
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init
|
|
"""
|
|
super(InMemoryDataset, self).__init__()
|
|
self.proto_desc.name = "MultiSlotInMemoryDataFeed"
|
|
|
|
def load_into_memory(self):
|
|
"""
|
|
Load data into memory
|
|
|
|
Example:
|
|
>>> import paddle.fluid as fluid
|
|
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
|
|
>>> filelist = ["a.txt", "b.txt"]
|
|
>>> dataset.set_filelist(filelist)
|
|
>>> dataset.load_into_memory()
|
|
"""
|
|
self._prepare_to_run()
|
|
self.dataset.load_into_memory()
|
|
|
|
def local_shuffle(self):
|
|
"""
|
|
Local shuffle
|
|
|
|
Example:
|
|
>>> import paddle.fluid as fluid
|
|
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
|
|
>>> filelist = ["a.txt", "b.txt"]
|
|
>>> dataset.set_filelist(filelist)
|
|
>>> dataset.local_shuffle()
|
|
"""
|
|
self.dataset.local_shuffle()
|
|
|
|
def global_shuffle(self, fleet=None):
|
|
"""
|
|
Global shuffle.
|
|
Global shuffle can be used only in distributed mode. i.e. multiple
|
|
processes on single machine or multiple machines training together.
|
|
If you run in distributed mode, you should pass fleet instead of None.
|
|
|
|
Examples:
|
|
>>> import paddle.fluid as fluid
|
|
>>> import paddle.fluid.incubate.fleet.parameter_server as fleet
|
|
>>> dataset = fluid.DatasetFactory.create_dataset("InMemoryDataset")
|
|
>>> filelist = ["a.txt", "b.txt"]
|
|
>>> dataset.set_filelist(filelist)
|
|
>>> dataset.global_shuffle(fleet)
|
|
|
|
Args:
|
|
fleet: fleet singleton. Default None.
|
|
"""
|
|
trainer_num = 1
|
|
if fleet is not None:
|
|
fleet.fleet_instance.role_maker_._barrier_worker()
|
|
trainer_num = fleet.worker_num()
|
|
self.dataset.register_client2client_msg_handler()
|
|
self.dataset.set_trainer_num(trainer_num)
|
|
if fleet is not None:
|
|
fleet.fleet_instance.role_maker_._barrier_worker()
|
|
self.dataset.global_shuffle()
|
|
if fleet is not None:
|
|
fleet.fleet_instance.role_maker_._barrier_worker()
|
|
|
|
|
|
class QueueDataset(DatasetBase):
|
|
"""
|
|
QueueDataset, it will process data streamly.
|
|
|
|
Example:
|
|
import paddle.fluid as fluid
|
|
dataset = fluid.DatasetFactory.create_dataset("QueueDataset")
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init
|
|
"""
|
|
super(QueueDataset, self).__init__()
|
|
self.proto_desc.name = "MultiSlotDataFeed"
|
|
|
|
def local_shuffle(self):
|
|
"""
|
|
Local shuffle
|
|
|
|
QueueDataset does not support local shuffle
|
|
"""
|
|
raise NotImplementedError(
|
|
"QueueDataset does not support local shuffle, "
|
|
"please use InMemoryDataset for local_shuffle")
|
|
|
|
def global_shuffle(self, fleet=None):
|
|
"""
|
|
Global shuffle
|
|
"""
|
|
raise NotImplementedError(
|
|
"QueueDataset does not support global shuffle, "
|
|
"please use InMemoryDataset for global_shuffle")
|