You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reduce_ops/reduce_mean_op.cc

95 lines
4.0 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_mean_op.h"
#include <memory>
#include <string>
#include <vector>
namespace paddle {
namespace operators {
// NOTE(dengkaipeng): Input(Out) is unnecessary in reduce_mean_grad
// calcualtion, but will incur a reduce_mean_grad op after
// reduce_mean_grad_grad, delete Input(Out) here.
// This change has no effect on reduce_mean_grad calculations.
class ReduceMeanOpGradDescMaker : public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
op->SetType("reduce_mean_grad");
op->SetInput("X", Input("X"));
op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
op->SetAttrMap(Attrs());
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
return op;
}
};
class ReduceMeanDoubleGradMaker : public framework::GradOpDescMakerBase {
public:
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
std::vector<std::unique_ptr<framework::OpDesc>> ops;
auto x_gg = OutputGrad(framework::GradVarName("X")); // input ddx
auto out_grads = InputGrad(framework::GradVarName("Out"));
if (!out_grads.empty()) {
auto* out_grad_op = new framework::OpDesc();
out_grad_op->SetType("reduce_mean");
out_grad_op->SetInput("X", x_gg);
out_grad_op->SetAttrMap(Attrs());
out_grad_op->SetOutput("Out", out_grads);
ops.emplace_back(out_grad_op);
}
return ops;
}
};
} // namespace operators
} // namespace paddle
class __reduce_meanMaker__ : public ops::ReduceOpMaker {
protected:
virtual std::string GetName() const { return "reduce_mean"; }
virtual std::string GetOpType() const { return "Reduce reduce_mean"; }
};
REGISTER_OPERATOR(reduce_mean, ops::ReduceOp, __reduce_meanMaker__,
ops::ReduceMeanOpGradDescMaker);
REGISTER_OPERATOR(reduce_mean_grad, ops::ReduceGradOp,
ops::ReduceMeanDoubleGradMaker);
REGISTER_OP_CPU_KERNEL(reduce_mean,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
float, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
double, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
int, ops::MeanFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
int64_t, ops::MeanFunctor>);
REGISTER_OP_CPU_KERNEL(reduce_mean_grad,
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
float, ops::MeanGradFunctor>,
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
double, ops::MeanGradFunctor>,
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
int, ops::MeanGradFunctor>,
ops::ReduceGradKernel<paddle::platform::CPUDeviceContext,
int64_t, ops::MeanGradFunctor>);