You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
14 KiB
370 lines
14 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
from paddle.fluid.layers.device import get_places
|
|
import unittest
|
|
import paddle.fluid as fluid
|
|
import paddle
|
|
import contextlib
|
|
import math
|
|
import numpy as np
|
|
import sys
|
|
import os
|
|
|
|
|
|
def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
|
|
hid_dim=32):
|
|
emb = fluid.layers.embedding(
|
|
input=data, size=[input_dim, emb_dim], is_sparse=True)
|
|
conv_3 = fluid.nets.sequence_conv_pool(
|
|
input=emb,
|
|
num_filters=hid_dim,
|
|
filter_size=3,
|
|
act="tanh",
|
|
pool_type="sqrt")
|
|
conv_4 = fluid.nets.sequence_conv_pool(
|
|
input=emb,
|
|
num_filters=hid_dim,
|
|
filter_size=4,
|
|
act="tanh",
|
|
pool_type="sqrt")
|
|
prediction = fluid.layers.fc(input=[conv_3, conv_4],
|
|
size=class_dim,
|
|
act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
|
|
lstm_size=128):
|
|
emb = fluid.layers.embedding(
|
|
input=data, size=[input_dim, emb_dim], is_sparse=True)
|
|
sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')
|
|
|
|
rnn = fluid.layers.DynamicRNN()
|
|
with rnn.block():
|
|
word = rnn.step_input(sentence)
|
|
prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
|
|
prev_cell = rnn.memory(value=0.0, shape=[lstm_size])
|
|
|
|
def gate_common(ipt, hidden, size):
|
|
gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
|
|
gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
|
|
return gate0 + gate1
|
|
|
|
forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
|
|
lstm_size))
|
|
input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
|
|
lstm_size))
|
|
output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
|
|
lstm_size))
|
|
cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
|
|
lstm_size))
|
|
|
|
cell = forget_gate * prev_cell + input_gate * cell_gate
|
|
hidden = output_gate * fluid.layers.tanh(x=cell)
|
|
rnn.update_memory(prev_cell, cell)
|
|
rnn.update_memory(prev_hidden, hidden)
|
|
rnn.output(hidden)
|
|
|
|
last = fluid.layers.sequence_last_step(rnn())
|
|
prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
def stacked_lstm_net(data,
|
|
label,
|
|
input_dim,
|
|
class_dim=2,
|
|
emb_dim=128,
|
|
hid_dim=512,
|
|
stacked_num=3):
|
|
assert stacked_num % 2 == 1
|
|
|
|
emb = fluid.layers.embedding(
|
|
input=data, size=[input_dim, emb_dim], is_sparse=True)
|
|
# add bias attr
|
|
|
|
# TODO(qijun) linear act
|
|
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
|
|
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
|
|
|
|
inputs = [fc1, lstm1]
|
|
|
|
for i in range(2, stacked_num + 1):
|
|
fc = fluid.layers.fc(input=inputs, size=hid_dim)
|
|
lstm, cell = fluid.layers.dynamic_lstm(
|
|
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
|
|
inputs = [fc, lstm]
|
|
|
|
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
|
|
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
|
|
|
|
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
|
|
size=class_dim,
|
|
act='softmax')
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
avg_cost = fluid.layers.mean(cost)
|
|
accuracy = fluid.layers.accuracy(input=prediction, label=label)
|
|
return avg_cost, accuracy, prediction
|
|
|
|
|
|
def train(word_dict,
|
|
net_method,
|
|
use_cuda,
|
|
parallel=False,
|
|
save_dirname=None,
|
|
is_local=True):
|
|
BATCH_SIZE = 128
|
|
PASS_NUM = 5
|
|
dict_dim = len(word_dict)
|
|
class_dim = 2
|
|
|
|
data = fluid.layers.data(
|
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
|
|
if not parallel:
|
|
cost, acc_out, prediction = net_method(
|
|
data, label, input_dim=dict_dim, class_dim=class_dim)
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
|
|
adagrad.minimize(cost)
|
|
|
|
train_data = paddle.batch(
|
|
paddle.reader.shuffle(
|
|
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
|
batch_size=BATCH_SIZE)
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
|
|
|
def train_loop(main_program):
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
for data in train_data():
|
|
cost_val, acc_val = exe.run(main_program,
|
|
feed=feeder.feed(data),
|
|
fetch_list=[cost, acc_out])
|
|
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
|
|
if cost_val < 0.4 and acc_val > 0.8:
|
|
if save_dirname is not None:
|
|
fluid.io.save_inference_model(save_dirname, ["words"],
|
|
prediction, exe)
|
|
return
|
|
if math.isnan(float(cost_val)):
|
|
sys.exit("got NaN loss, training failed.")
|
|
raise AssertionError("Cost is too large for {0}".format(
|
|
net_method.__name__))
|
|
|
|
if is_local:
|
|
train_loop(fluid.default_main_program())
|
|
else:
|
|
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
|
|
pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip...
|
|
eplist = []
|
|
for ip in pserver_ips.split(","):
|
|
eplist.append(':'.join([ip, port]))
|
|
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
|
|
trainers = int(os.getenv("PADDLE_TRAINERS"))
|
|
current_endpoint = os.getenv("POD_IP") + ":" + port
|
|
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
|
|
training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
|
|
t = fluid.DistributeTranspiler()
|
|
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
|
|
if training_role == "PSERVER":
|
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
|
pserver_startup = t.get_startup_program(current_endpoint,
|
|
pserver_prog)
|
|
exe.run(pserver_startup)
|
|
exe.run(pserver_prog)
|
|
elif training_role == "TRAINER":
|
|
train_loop(t.get_trainer_program())
|
|
|
|
|
|
def infer(word_dict, use_cuda, save_dirname=None):
|
|
if save_dirname is None:
|
|
return
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
|
|
inference_scope = fluid.core.Scope()
|
|
with fluid.scope_guard(inference_scope):
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
# we want to obtain data from using fetch operators).
|
|
[inference_program, feed_target_names,
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
word_dict_len = len(word_dict)
|
|
|
|
# Setup input by creating LoDTensor to represent sequence of words.
|
|
# Here each word is the basic element of the LoDTensor and the shape of
|
|
# each word (base_shape) should be [1] since it is simply an index to
|
|
# look up for the corresponding word vector.
|
|
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
|
|
# which has only one level of detail. Then the created LoDTensor will have only
|
|
# one higher level structure (sequence of words, or sentence) than the basic
|
|
# element (word). Hence the LoDTensor will hold data for three sentences of
|
|
# length 3, 4 and 2, respectively.
|
|
# Note that recursive_sequence_lengths should be a list of lists.
|
|
recursive_seq_lens = [[3, 4, 2]]
|
|
base_shape = [1]
|
|
# The range of random integers is [low, high]
|
|
tensor_words = fluid.create_random_int_lodtensor(
|
|
recursive_seq_lens,
|
|
base_shape,
|
|
place,
|
|
low=0,
|
|
high=word_dict_len - 1)
|
|
|
|
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
|
|
# and results will contain a list of data corresponding to fetch_targets.
|
|
assert feed_target_names[0] == "words"
|
|
results = exe.run(inference_program,
|
|
feed={feed_target_names[0]: tensor_words},
|
|
fetch_list=fetch_targets,
|
|
return_numpy=False)
|
|
print(results[0].recursive_sequence_lengths())
|
|
np_data = np.array(results[0])
|
|
print("Inference Shape: ", np_data.shape)
|
|
print("Inference results: ", np_data)
|
|
|
|
|
|
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
return
|
|
|
|
train(
|
|
word_dict,
|
|
net_method,
|
|
use_cuda,
|
|
parallel=parallel,
|
|
save_dirname=save_dirname)
|
|
infer(word_dict, use_cuda, save_dirname)
|
|
|
|
|
|
class TestUnderstandSentiment(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.word_dict = paddle.dataset.imdb.word_dict()
|
|
|
|
@contextlib.contextmanager
|
|
def new_program_scope(self):
|
|
prog = fluid.Program()
|
|
startup_prog = fluid.Program()
|
|
scope = fluid.core.Scope()
|
|
with fluid.scope_guard(scope):
|
|
with fluid.program_guard(prog, startup_prog):
|
|
yield
|
|
|
|
def test_conv_cpu(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=convolution_net,
|
|
use_cuda=False,
|
|
save_dirname="understand_sentiment_conv.inference.model")
|
|
|
|
def test_conv_cpu_parallel(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=convolution_net,
|
|
use_cuda=False,
|
|
parallel=True)
|
|
|
|
@unittest.skip(reason="make CI faster")
|
|
def test_stacked_lstm_cpu(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=stacked_lstm_net,
|
|
use_cuda=False,
|
|
save_dirname="understand_sentiment_stacked_lstm.inference.model")
|
|
|
|
def test_stacked_lstm_cpu_parallel(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=stacked_lstm_net,
|
|
use_cuda=False,
|
|
parallel=True)
|
|
|
|
def test_conv_gpu(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=convolution_net,
|
|
use_cuda=True,
|
|
save_dirname="understand_sentiment_conv.inference.model")
|
|
|
|
def test_conv_gpu_parallel(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=convolution_net,
|
|
use_cuda=True,
|
|
parallel=True)
|
|
|
|
@unittest.skip(reason="make CI faster")
|
|
def test_stacked_lstm_gpu(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=stacked_lstm_net,
|
|
use_cuda=True,
|
|
save_dirname="understand_sentiment_stacked_lstm.inference.model")
|
|
|
|
def test_stacked_lstm_gpu_parallel(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=stacked_lstm_net,
|
|
use_cuda=True,
|
|
parallel=True)
|
|
|
|
@unittest.skip(reason='make CI faster')
|
|
def test_dynrnn_lstm_gpu(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=dyn_rnn_lstm,
|
|
use_cuda=True,
|
|
parallel=False)
|
|
|
|
def test_dynrnn_lstm_gpu_parallel(self):
|
|
with self.new_program_scope():
|
|
main(
|
|
self.word_dict,
|
|
net_method=dyn_rnn_lstm,
|
|
use_cuda=True,
|
|
parallel=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|