You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/book/notest_understand_sentiment.py

370 lines
14 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from paddle.fluid.layers.device import get_places
import unittest
import paddle.fluid as fluid
import paddle
import contextlib
import math
import numpy as np
import sys
import os
def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
hid_dim=32):
emb = fluid.layers.embedding(
input=data, size=[input_dim, emb_dim], is_sparse=True)
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=3,
act="tanh",
pool_type="sqrt")
conv_4 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=4,
act="tanh",
pool_type="sqrt")
prediction = fluid.layers.fc(input=[conv_3, conv_4],
size=class_dim,
act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
def dyn_rnn_lstm(data, label, input_dim, class_dim=2, emb_dim=32,
lstm_size=128):
emb = fluid.layers.embedding(
input=data, size=[input_dim, emb_dim], is_sparse=True)
sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')
rnn = fluid.layers.DynamicRNN()
with rnn.block():
word = rnn.step_input(sentence)
prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
prev_cell = rnn.memory(value=0.0, shape=[lstm_size])
def gate_common(ipt, hidden, size):
gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
return gate0 + gate1
forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
lstm_size))
input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
lstm_size))
output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
lstm_size))
cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
lstm_size))
cell = forget_gate * prev_cell + input_gate * cell_gate
hidden = output_gate * fluid.layers.tanh(x=cell)
rnn.update_memory(prev_cell, cell)
rnn.update_memory(prev_hidden, hidden)
rnn.output(hidden)
last = fluid.layers.sequence_last_step(rnn())
prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
def stacked_lstm_net(data,
label,
input_dim,
class_dim=2,
emb_dim=128,
hid_dim=512,
stacked_num=3):
assert stacked_num % 2 == 1
emb = fluid.layers.embedding(
input=data, size=[input_dim, emb_dim], is_sparse=True)
# add bias attr
# TODO(qijun) linear act
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
fc = fluid.layers.fc(input=inputs, size=hid_dim)
lstm, cell = fluid.layers.dynamic_lstm(
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
inputs = [fc, lstm]
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
size=class_dim,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(cost)
accuracy = fluid.layers.accuracy(input=prediction, label=label)
return avg_cost, accuracy, prediction
def train(word_dict,
net_method,
use_cuda,
parallel=False,
save_dirname=None,
is_local=True):
BATCH_SIZE = 128
PASS_NUM = 5
dict_dim = len(word_dict)
class_dim = 2
data = fluid.layers.data(
name="words", shape=[1], dtype="int64", lod_level=1)
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
if not parallel:
cost, acc_out, prediction = net_method(
data, label, input_dim=dict_dim, class_dim=class_dim)
else:
raise NotImplementedError()
adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
adagrad.minimize(cost)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=1000),
batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
def train_loop(main_program):
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
for data in train_data():
cost_val, acc_val = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[cost, acc_out])
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
if cost_val < 0.4 and acc_val > 0.8:
if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ["words"],
prediction, exe)
return
if math.isnan(float(cost_val)):
sys.exit("got NaN loss, training failed.")
raise AssertionError("Cost is too large for {0}".format(
net_method.__name__))
if is_local:
train_loop(fluid.default_main_program())
else:
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS") # ip,ip...
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("POD_IP") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
t = fluid.DistributeTranspiler()
t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint,
pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
elif training_role == "TRAINER":
train_loop(t.get_trainer_program())
def infer(word_dict, use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
word_dict_len = len(word_dict)
# Setup input by creating LoDTensor to represent sequence of words.
# Here each word is the basic element of the LoDTensor and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the recursive_sequence_lengths info is set to [[3, 4, 2]],
# which has only one level of detail. Then the created LoDTensor will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that recursive_sequence_lengths should be a list of lists.
recursive_seq_lens = [[3, 4, 2]]
base_shape = [1]
# The range of random integers is [low, high]
tensor_words = fluid.create_random_int_lodtensor(
recursive_seq_lens,
base_shape,
place,
low=0,
high=word_dict_len - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == "words"
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].recursive_sequence_lengths())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
print("Inference results: ", np_data)
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
train(
word_dict,
net_method,
use_cuda,
parallel=parallel,
save_dirname=save_dirname)
infer(word_dict, use_cuda, save_dirname)
class TestUnderstandSentiment(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.word_dict = paddle.dataset.imdb.word_dict()
@contextlib.contextmanager
def new_program_scope(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
def test_conv_cpu(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=convolution_net,
use_cuda=False,
save_dirname="understand_sentiment_conv.inference.model")
def test_conv_cpu_parallel(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=convolution_net,
use_cuda=False,
parallel=True)
@unittest.skip(reason="make CI faster")
def test_stacked_lstm_cpu(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=False,
save_dirname="understand_sentiment_stacked_lstm.inference.model")
def test_stacked_lstm_cpu_parallel(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=False,
parallel=True)
def test_conv_gpu(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=convolution_net,
use_cuda=True,
save_dirname="understand_sentiment_conv.inference.model")
def test_conv_gpu_parallel(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=convolution_net,
use_cuda=True,
parallel=True)
@unittest.skip(reason="make CI faster")
def test_stacked_lstm_gpu(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=True,
save_dirname="understand_sentiment_stacked_lstm.inference.model")
def test_stacked_lstm_gpu_parallel(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=stacked_lstm_net,
use_cuda=True,
parallel=True)
@unittest.skip(reason='make CI faster')
def test_dynrnn_lstm_gpu(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=dyn_rnn_lstm,
use_cuda=True,
parallel=False)
def test_dynrnn_lstm_gpu_parallel(self):
with self.new_program_scope():
main(
self.word_dict,
net_method=dyn_rnn_lstm,
use_cuda=True,
parallel=True)
if __name__ == '__main__':
unittest.main()