You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.1 KiB
83 lines
3.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/rowwise_add_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class RowwiseAddOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
auto dim0 = ctx.Input<Tensor>("X")->dims();
|
|
auto dim1 = ctx.Input<Tensor>("b")->dims();
|
|
|
|
PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
|
|
PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
|
|
PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
|
|
PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1");
|
|
ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
|
|
}
|
|
};
|
|
|
|
class RowwiseAddOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
RowwiseAddOpMaker(framework::OpProto *proto,
|
|
framework::OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "The left input of row-wise add op, must be matrix");
|
|
AddInput("b", "The right input of row-wise add op, must be vector");
|
|
AddOutput("Out", "The output of row-wise add op");
|
|
AddComment(R"DOC(Row-wise Add operator
|
|
|
|
for i in xrange(X.shape[0]):
|
|
Out = X[i] + b
|
|
)DOC");
|
|
}
|
|
};
|
|
class RowwiseAddGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X should not be null");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null");
|
|
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto dims0 = ctx.Input<Tensor>("X")->dims();
|
|
auto dims1 = ctx.Input<Tensor>("b")->dims();
|
|
PADDLE_ENFORCE_EQ(1, dims1.size(), "b dims should be 1")
|
|
ctx.Output<Tensor>(framework::GradVarName("X"))->Resize(dims0);
|
|
ctx.Output<Tensor>(framework::GradVarName("b"))->Resize(dims1);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker,
|
|
rowwise_add_grad, ops::RowwiseAddGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rowwise_add, ops::RowwiseAddKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rowwise_add_grad,
|
|
ops::RowwiseAddGradKernel<paddle::platform::CPUPlace, float>);
|