You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/incubate/fleet/base/role_maker.py

1004 lines
32 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defination of Role Makers."""
from __future__ import print_function
import paddle.fluid as fluid
import os
import time
__all__ = [
'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
]
class Role:
WORKER = 1
SERVER = 2
class RoleMakerBase(object):
"""
RoleMakerBase is a base class for assigning a role to current process
in distributed training.
A paddle developer can implement RoleMakerBase to design a role maker
for worker or pserver assignment.
"""
def __init__(self):
self._worker_endpoints = []
self._server_endpoints = []
self._role_is_generated = False
self._role = None
self._current_id = -1
def is_worker(self):
"""
return is_worker() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def is_server(self):
"""
return is_server() of current process
"""
raise NotImplementedError("Please implement this method in child class")
def is_first_worker(self):
"""
Check whether the node is the first instance of worker.
Returns:
bool: True if this is the first node of worker,
False if not.
"""
raise NotImplementedError("Please implement this method in child class")
def worker_num(self):
"""
Get current total worker number.
Returns:
int: worker number
"""
raise NotImplementedError("Please implement this method in child class")
def worker_index(self):
"""
Get current worker id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def server_index(self):
"""
Get current server id.
Returns:
int: node id
"""
raise NotImplementedError("Please implement this method in child class")
def get_trainer_endpoints(self):
"""
return trainer endpoints
"""
return self._worker_endpoints
def get_pserver_endpoints(self):
"""
return pserver endpoints
"""
return self._server_endpoints
def to_string(self):
return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
self._role, self._current_id, self._worker_endpoints,
self._server_endpoints)
def all_gather(self, input):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
print("warning: RoleMakerBase does not have all gather.")
return None
def all_reduce_worker(self, input, output, mode="sum"):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
print("warning: RoleMakerBase does not have all reduce worker.")
def barrier_worker(self):
"""
barrier between trainers if current role is TRAINER
"""
print("warning: RoleMakerBase does not have barrier worker.")
def barrier_all(self):
"""
barrier between trainers if current role is PSERVER
"""
print("warning: RoleMakerBase does not have barrier all.")
class MPIRoleMaker(RoleMakerBase):
"""
MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
mpi4py will be used if a developer inherits MPIRoleMaker
"""
def __init__(self):
"""Init."""
super(MPIRoleMaker, self).__init__()
from mpi4py import MPI
self.MPI = MPI
self._comm = MPI.COMM_WORLD
self._node_type_comm = None
self._ips = None
self._ip = None
def _get_rank(self):
"""Return rank."""
self._rank = self._comm.Get_rank()
return self._rank
def _get_size(self):
"""Return size."""
self._size = self._comm.Get_size()
return self._size
def _all_gather(self, obj):
"""
all_gather(obj) will call MPI's allgather function
"""
self._barrier_all()
return self._comm.allgather(obj)
def _worker_gather(self, obj):
"""
worker_gather(obj) will call MPI's allgather function
"""
if self.is_worker():
self._node_type_comm.barrier()
return self._node_type_comm.allgather(obj)
return None
def _barrier_all(self):
"""
barrier_all() will call MPI's barrier_all function
"""
self._comm.barrier()
def _finalize(self):
"""
finalize the current MPI instance.
"""
self.MPI.Finalize()
def _get_ips(self):
"""
collect current distributed job's ip list
"""
if not self._ips:
self._ips = self._comm.allgather(self.get_local_ip())
return self._ips
def get_local_ip(self):
"""Return get local ip."""
import socket
self._ip = socket.gethostbyname(socket.gethostname())
return self._ip
def generate_role(self):
"""
generate_role() should be called to identify current process's role
"""
raise NotImplementedError("Please implement this method in child class")
class MPISymetricRoleMaker(MPIRoleMaker):
"""
MPISymetricRoleMaker is designed for worker and server assignment
under MPI. Typically, a worker and a server node will be appointed
on each physical node. This role maker can be only used under MPI.
"""
def __init__(self):
"""Init."""
super(MPISymetricRoleMaker, self).__init__()
self._node_type = None
self._proc_per_node = 2
self._pserver_rand_port = 0
def _check_role_generation(self):
"""Check whether role has been generated."""
if not self._role_is_generated:
raise NameError("generate_role() should be called first")
return True
def all_gather(self, input):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
if not self._role_is_generated:
self.generate_role()
return self._all_gather(input)
def all_reduce_worker(self, input, output, mode="sum"):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if not self._role_is_generated:
self.generate_role()
if not self.is_worker():
print("warning: current role is not worker in all_reduce_worker")
return
self._all_reduce(input, output, mode)
def barrier_worker(self):
"""
barrier between trainers if current role is TRAINER
"""
if not self._role_is_generated:
self.generate_role()
if self.is_worker():
self._node_type_comm.barrier()
else:
print("warning: current role is not worker in barrier_worker")
def barrier_all(self):
"""
barrier between trainers if current role is PSERVER
"""
if not self._role_is_generated:
self.generate_role()
self._comm.barrier()
def is_first_worker(self):
"""
return whether current process is the first worker assigned by role maker
"""
if self._check_role_generation():
return self.is_worker() and 0 == self.worker_index()
return False
def get_pserver_endpoints(self):
"""
get pserver endpoints
Returns:
endpoints(list): pserver endpoints
"""
if self._pserver_rand_port <= 0:
import random
random.seed(self._server_num())
# port will be randomly generated from 60001 to 63999
# random seed is server num so that all nodes will get
# the same port
self._pserver_rand_port = random.randint(60001, 64000)
endpoints = [
x + ":" + str(self._pserver_rand_port)
for x in self._server_endpoints
]
return endpoints
def worker_num(self):
return self._worker_num()
def is_worker(self):
"""
return whether current process is worker assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 1
return False
def is_server(self):
"""
return whether current process is server assigned by role maker
"""
if self._check_role_generation():
return self._node_type == 0
return False
def _worker_num(self):
"""
return the current number of worker
"""
if self._check_role_generation():
return self._get_size() / self._proc_per_node
return 0
def _server_num(self):
"""
return the current number of server
"""
if self._check_role_generation():
return self._get_size() / self._proc_per_node
else:
self.generate_role()
return self._get_size() / self._proc_per_node
def worker_index(self):
"""
return the index of worker
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
else:
self.generate_role()
return self._get_size() / 2
def server_index(self):
"""
return the index of server
"""
if self._check_role_generation():
return self._rank / self._proc_per_node
else:
self.generate_role()
return self._get_size() / self._proc_per_node
def _all_reduce(self, input, output, mode="sum"):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if not self._role_is_generated:
self.generate_role()
if mode == "sum":
mode = self.MPI.SUM
elif mode == "max":
mode = self.MPI.MAX
elif mode == "min":
mode = self.MPI.MIN
else:
raise ValueError("unknown mode: %s" % mode)
self._node_type_comm.Allreduce(input, output, op=mode)
def _barrier_worker(self):
"""
barrier all workers in current distributed job
"""
if self._check_role_generation():
if self.is_worker():
self._node_type_comm.barrier()
else:
raise Exception("You should check role generation first")
def _barrier_server(self):
"""
barrier all servers in current distributed job
"""
if self._check_role_generation():
if self.is_server():
self._node_type_comm.barrier()
else:
raise Exception("You should check role generation first")
def generate_role(self):
"""
generate currently process's role
"""
if not self._role_is_generated:
# TODO(guru4elephant): only allow to be called once
self._worker_endpoints = self._get_ips()[1::2]
self._server_endpoints = self._get_ips()[::2]
if 0 == self._get_rank() % self._proc_per_node % 2:
self._node_type = 0
else:
self._node_type = 1
self._node_type_comm = self._comm.Split(self._node_type)
self._role_is_generated = True
else:
raise Exception("You should check role generation first")
class PaddleCloudRoleMaker(RoleMakerBase):
"""
role maker for paddle cloud,
base class is RoleMakerBase
"""
def __init__(self, is_collective=False):
super(PaddleCloudRoleMaker, self).__init__()
self._role_is_generated = False
self._is_collective = is_collective
def generate_role(self):
"""Generate role."""
if not self._role_is_generated:
if not self._is_collective:
try:
# Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
# format: string(ip:port), eg. 127.0.0.1:6001
eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
",")
# note that, we usually assign the same port to different ips
# if we run parameter server training in local mode
# port should be different in environment variables
trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
training_role = os.environ["TRAINING_ROLE"]
if training_role not in ["TRAINER", "PSERVER"]:
raise ValueError(
"TRAINING_ROLE must be PSERVER or TRAINER")
if training_role == "TRAINER":
role = Role.WORKER
current_id = int(os.environ["PADDLE_TRAINER_ID"])
elif training_role == "PSERVER":
role = Role.SERVER
cur_ip = os.environ["POD_IP"]
curr_port = os.environ["PADDLE_PORT"]
curr_endpoint = ":".join([cur_ip, curr_port])
current_id = eplist.index(curr_endpoint)
else:
raise ValueError(
"TRAINING_ROLE must be PSERVER or TRAINER")
except ValueError as ve:
raise ValueError(
"something wrong with PaddleCloud, please check environment"
)
self._trainers_num = trainers_num
self._server_endpoints = eplist
self._role = role
self._current_id = current_id
else:
self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
"TRAINER")
assert (self._training_role == "TRAINER")
self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
self._worker_endpoints = self._worker_endpoints.split(",")
self._trainers_num = len(self._worker_endpoints)
self._role_is_generated = True
def get_pserver_endpoints(self):
if not self._role_is_generated:
self.generate_role()
return self._server_endpoints
def is_worker(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER
def is_server(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.SERVER
def is_first_worker(self):
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER and self._current_id == 0
def worker_index(self):
if not self._role_is_generated:
self.generate_role()
return self._current_id
def server_index(self):
if not self._role_is_generated:
self.generate_role()
return self._current_id
def worker_num(self):
if not self._role_is_generated:
self.generate_role()
return self._trainers_num
class GeneralRoleMaker(RoleMakerBase):
"""
This role maker is for general use, you can set os.environ to customize:
PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, seperated by ','
PADDLE_TRAINER_ENDPOINTS : all trainers' ip:port, seperated by ','
TRAINING_ROLE : TRAINER or PSERVER
PADDLE_TRAINER_ID : current trainer id (only for trainer),
it is index in PADDLE_TRAINER_ENDPOINTS
PADDLE_PSERVER_ID : current pserver id (only for pserver)
it is index in PADDLE_PSERVERS_IP_PORT_LIST
"""
def __init__(self, **kwargs):
super(RoleMakerBase, self).__init__()
self._role_is_generated = False
self._hdfs_name = kwargs.get("hdfs_name", "")
self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
self._hdfs_path = kwargs.get("path", "")
self._iface = self.__get_default_iface()
# this environment variable can be empty
self._prefix = os.getenv("SYS_JOB_ID", "")
def generate_role(self):
"""
generate role for general role maker
"""
if not self._role_is_generated:
eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
training_role = os.environ["TRAINING_ROLE"]
worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
trainers_num = len(worker_endpoints)
if training_role not in ["TRAINER", "PSERVER"]:
raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
if training_role == "TRAINER":
role = Role.WORKER
current_id = int(os.environ["PADDLE_TRAINER_ID"])
self._node_type = 1
self._cur_endpoint = worker_endpoints[current_id]
gloo = fluid.core.Gloo()
gloo.init(current_id,
len(worker_endpoints),
self._hdfs_path.rstrip("/") + "/trainer",
self._hdfs_name, self._hdfs_ugi, self._iface,
self._prefix)
self._node_type_comm = gloo
elif training_role == "PSERVER":
role = Role.SERVER
if os.environ.get("PADDLE_PSERVER_ID") is not None:
current_id = int(os.environ["PADDLE_PSERVER_ID"])
cur_endpoint = eplist[current_id]
else:
# this is for compatible with paddlecloud
cur_ip = os.environ["POD_IP"]
cur_port = os.environ["PADDLE_PORT"]
cur_endpoint = ":".join([cur_ip, cur_port])
current_id = eplist.index(cur_endpoint)
self._node_type = 0
self._cur_endpoint = cur_endpoint
gloo = fluid.core.Gloo()
gloo.init(current_id,
len(eplist),
self._hdfs_path.rstrip("/") + "/pserver",
self._hdfs_name, self._hdfs_ugi, self._iface,
self._prefix)
self._node_type_comm = gloo
gloo = fluid.core.Gloo()
all_list = worker_endpoints + eplist
gloo.init(
all_list.index(self._cur_endpoint),
len(all_list),
self._hdfs_path.rstrip("/") + "/all", self._hdfs_name,
self._hdfs_ugi, self._iface, self._prefix)
self._all_comm = gloo
self._trainers_num = trainers_num
self._server_endpoints = eplist
self._role = role
self._current_id = current_id
self._rank = all_list.index(self._cur_endpoint)
self._size = len(all_list)
self._worker_endpoints = worker_endpoints
self._role_is_generated = True
def all_gather(self, input):
"""
all gather between trainers and pservers
Args:
input(int|float): input value
Returns:
return a list of values
"""
return self._all_gather(input)
def all_reduce_worker(self, input, output, mode="sum"):
"""
all reduce between trainers if current role is TRAINER,
only support array of one dim.
Args:
input(list/numpy.array): array of one dim
output(list/numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if not self.is_worker():
return
self._all_reduce(input, output, mode)
def barrier_worker(self):
"""
barrier between trainers if current role is TRAINER
"""
self._barrier_worker()
def barrier_all(self):
"""
barrier between trainers if current role is PSERVER
"""
self._barrier_all()
def get_local_endpoint(self):
"""
get local endpoint of current process
"""
if not self._role_is_generated:
self.generate_role()
return self._cur_endpoint
def get_trainer_endpoints(self):
"""
get endpoint of all trainers
"""
if not self._role_is_generated:
self.generate_role()
return self._worker_endpoints
def get_pserver_endpoints(self):
"""
get endpoint of all pservers
"""
if not self._role_is_generated:
self.generate_role()
return self._server_endpoints
def is_worker(self):
"""
whether current process is worker
"""
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER
def is_server(self):
"""
whether current process is server
"""
if not self._role_is_generated:
self.generate_role()
return self._role == Role.SERVER
def is_first_worker(self):
"""
whether current process is worker of rank 0
"""
if not self._role_is_generated:
self.generate_role()
return self._role == Role.WORKER and self._current_id == 0
def worker_index(self):
"""
get index of current worker
"""
if not self._role_is_generated:
self.generate_role()
return self._current_id
def server_index(self):
"""
get index of current server
"""
if not self._role_is_generated:
self.generate_role()
return self._current_id
def worker_num(self):
"""
retrun the current number of worker
"""
if not self._role_is_generated:
self.generate_role()
return self._worker_num()
def server_num(self):
"""
return the current number of server
"""
if not self._role_is_generated:
self.generate_role()
return self._server_num()
def _barrier_worker(self):
"""
barrier all workers in current distributed job
"""
if not self._role_is_generated:
self.generate_role()
if self.is_worker():
self._node_type_comm.barrier()
def _barrier_all(self):
"""
barrier all workers and servers in current distributed job
"""
if not self._role_is_generated:
self.generate_role()
self._all_comm.barrier()
def _barrier_server(self):
"""
barrier all servers in current distributed job
"""
if not self._role_is_generated:
self.generate_role()
if self.is_server():
self._node_type_comm.barrier()
def _worker_num(self):
"""
return the current number of worker
"""
if not self._role_is_generated:
self.generate_role()
return self._trainers_num
def _server_num(self):
"""
return the current number of server
"""
if not self._role_is_generated:
self.generate_role()
return len(self._server_endpoints)
def _finalize(self):
"""Default do nothing."""
pass
def _all_reduce(self, input, output, mode="sum"):
"""
all reduce between all workers
Args:
input(list|numpy.array): array of one dim
output(list|numpy.array): array of one dim
mode(str): "sum" or "min" or "max"
"""
if not self._role_is_generated:
self.generate_role()
input_list = [i for i in input]
ans = self._node_type_comm.all_reduce(input_list, mode)
for i in range(len(ans)):
output[i] = ans[i]
def _all_gather(self, obj):
"""
gather between all workers and pservers
"""
if not self._role_is_generated:
self.generate_role()
self._barrier_all()
return self._all_comm.all_gather(obj)
def _worker_gather(self, obj):
"""
gather between all workers
"""
if not self._role_is_generated:
self.generate_role()
if not self.is_worker():
return None
self._barrier_worker()
return self._node_type_comm.all_gather(obj)
def _get_rank(self):
"""
get current rank in all workers and pservers
"""
if not self._role_is_generated:
self.generate_role()
return self._rank
def _get_size(self):
"""
get total num of all workers and pservers
"""
if not self._role_is_generated:
self.generate_role()
return self._size
def __get_default_iface(self):
"""
get default physical interface
"""
default1 = self.__get_default_iface_from_gateway()
default2 = self.__get_default_iface_from_interfaces()
return default2 if default1 == "lo" else default1
def __get_default_iface_from_gateway(self):
"""
get default physical interface
"""
import netifaces
gateways = netifaces.gateways()
if gateways.get(netifaces.AF_INET) != None:
gateway = gateways[netifaces.AF_INET]
if len(gateway) > 0 and len(gateway[0]) > 1:
return gateway[0][1]
return "lo"
def __get_default_iface_from_interfaces(self):
"""
get default physical interface
"""
import netifaces
for intf_name in netifaces.interfaces():
addresses = netifaces.ifaddresses(intf_name)
if netifaces.AF_INET in addresses:
ipv4_addresses = addresses[netifaces.AF_INET]
for ipv4_address in ipv4_addresses:
if 'broadcast' in ipv4_address:
return intf_name
return "lo"
class UserDefinedRoleMaker(RoleMakerBase):
"""
UserDefinedRoleMaker is designed for worker and server assignment
under manual. Typically, a worker and a server node will be appointed
on each physical node, It can be assign by user.
"""
def __init__(self,
current_id=0,
role=Role.WORKER,
worker_num=0,
server_endpoints=None):
super(UserDefinedRoleMaker, self).__init__()
if not isinstance(server_endpoints, list):
raise TypeError("server_endpoints must be as string list")
elif len(server_endpoints) <= 0:
raise ValueError(
"the length of server_endpoints list must be greater than 0")
elif len(server_endpoints) != len(set(server_endpoints)):
raise ValueError("server_endpoints can't have duplicate elements")
else:
for server_endpoint in server_endpoints:
if not isinstance(server_endpoint, str):
raise TypeError(
"every element in server_endpoints list must be as string"
)
self._server_endpoints = server_endpoints
if role != Role.WORKER and role != Role.SERVER:
raise TypeError("role must be as Role")
else:
self._role = role
if not isinstance(current_id, int):
raise TypeError("current_id must be as int")
else:
if current_id < 0:
raise ValueError(
"current_id must be greater than or equal to 0")
elif self._role == Role.SERVER and current_id >= len(
server_endpoints):
raise ValueError(
"if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
)
self._current_id = current_id
if not isinstance(worker_num, int):
raise TypeError("worker_num must be as int")
else:
if worker_num <= 0:
raise ValueError("worker_num must be greater than 0")
self._worker_num = worker_num
def generate_role(self):
self._role_is_generated = True
def is_worker(self):
return self._role == Role.WORKER
def is_server(self):
return self._role == Role.SERVER
def is_first_worker(self):
return self._role == Role.WORKER and self._current_id == 0
def worker_index(self):
return self._current_id
def server_index(self):
return self._current_id
def worker_num(self):
return self._worker_num
class UserDefinedCollectiveRoleMaker(RoleMakerBase):
"""
UserDefinedCollectiveRoleMaker is designed for worker assignment
under manual for collective mode.
"""
def __init__(self, current_id=0, worker_endpoints=None):
super(UserDefinedCollectiveRoleMaker, self).__init__()
if not isinstance(worker_endpoints, list):
raise TypeError("worker_endpoints must be as string list")
elif len(worker_endpoints) <= 0:
raise ValueError(
"the length of worker_endpoints list must be greater than 0")
elif len(worker_endpoints) != len(set(worker_endpoints)):
raise ValueError("worker_endpoints can't have duplicate elements")
else:
for worker_endpoint in worker_endpoints:
if not isinstance(worker_endpoint, str):
raise TypeError(
"every element in worker_endpoints list must be as string"
)
self._worker_endpoints = worker_endpoints
if not isinstance(current_id, int):
raise TypeError("current_id must be as int")
else:
if current_id < 0:
raise ValueError(
"current_id must be greater than or equal to 0")
elif current_id >= len(worker_endpoints):
raise ValueError(
"current_id must be less than or equal to len(worker_endpoints) - 1"
)
self._current_id = current_id
self._worker_num = len(self._worker_endpoints)
def generate_role(self):
self._role_is_generated = True
def is_worker(self):
return True
def is_first_worker(self):
return self._current_id == 0
def worker_index(self):
return self._current_id
def worker_num(self):
return self._worker_num