You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/trainer/tests/test_recurrent_machine_gene...

154 lines
5.2 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include <paddle/trainer/Trainer.h>
#include <paddle/utils/PythonUtil.h>
#include <gtest/gtest.h>
using namespace paddle; // NOLINT
using namespace std; // NOLINT
static const string& CONFIG_FILE = "trainer/tests/sample_trainer_rnn_gen.conf";
static const string& NEST_CONFIG_FILE =
"trainer/tests/sample_trainer_nest_rnn_gen.conf";
static const string& OUTPUT_DIR = "trainer/tests/dump_text.test";
static string modelDir = "trainer/tests/rnn_gen_test_model_dir/t1"; // NOLINT
static string expectFile = // NOLINT
"trainer/tests/rnn_gen_test_model_dir/r1.test"; // NOLINT
DECLARE_string(config_args);
vector<float> readRetFile(const string& fname) {
ifstream inFile(fname);
float ret;
vector<float> nums;
while (inFile >> ret) {
nums.push_back(ret);
}
return nums;
}
void checkOutput(const string& expRetFile) {
vector<float> rets = readRetFile(OUTPUT_DIR);
vector<float> expRets = readRetFile(expRetFile);
EXPECT_EQ(rets.size(), expRets.size());
for (size_t i = 0; i < rets.size(); i++) {
EXPECT_FLOAT_EQ(rets[i], expRets[i]);
}
}
void prepareInArgs(vector<Argument>& inArgs,
const size_t batchSize,
bool useGpu,
bool hasSubseq) {
inArgs.clear();
// sentence id
Argument sentId;
sentId.value = nullptr;
if (hasSubseq) {
// as there is only one sequence, there is only one label.
IVector::resizeOrCreate(sentId.ids, 1, useGpu);
sentId.ids->setElement(0, 0);
} else {
// as there is batchSize word, there is batchSize label.
IVector::resizeOrCreate(sentId.ids, batchSize, useGpu);
for (size_t i = 0; i < batchSize; ++i) sentId.ids->setElement(i, i);
}
inArgs.emplace_back(sentId);
// a dummy layer to decide batch size
Argument dummyInput;
dummyInput.value = Matrix::create(batchSize, 2, false, useGpu);
dummyInput.value->randomizeUniform();
if (hasSubseq) {
// generate one sequence with batchSize subsequence,
// and each subsequence has only one word.
dummyInput.sequenceStartPositions = ICpuGpuVector::create(2, false);
int* buf = dummyInput.sequenceStartPositions->getMutableData(false);
dummyInput.subSequenceStartPositions =
ICpuGpuVector::create(batchSize + 1, false);
int* subBuf = dummyInput.subSequenceStartPositions->getMutableData(false);
buf[0] = 0;
buf[1] = batchSize;
for (size_t i = 0; i < batchSize + 1; i++) subBuf[i] = i;
}
inArgs.emplace_back(dummyInput);
}
void testGeneration(const string& configFile,
bool useGpu,
bool hasSubseq,
const string& expRetFile) {
FLAGS_use_gpu = useGpu;
auto config = std::make_shared<TrainerConfigHelper>(configFile);
unique_ptr<GradientMachine> gradientMachine(GradientMachine::create(*config));
gradientMachine->loadParameters(modelDir);
vector<Argument> inArgs(2);
const size_t batchSize = 15;
prepareInArgs(inArgs, batchSize, useGpu, hasSubseq);
vector<Argument> outArgs;
unique_ptr<Evaluator> testEvaluator(gradientMachine->makeEvaluator());
testEvaluator->start();
gradientMachine->forward(inArgs, &outArgs, PASS_TEST);
gradientMachine->eval(testEvaluator.get());
testEvaluator->finish();
checkOutput(expRetFile);
}
#ifndef PADDLE_TYPE_DOUBLE
TEST(RecurrentGradientMachine, test_generation) {
#ifdef PADDLE_ONLY_CPU
const auto useGpuConfs = {false};
#else
const auto useGpuConfs = {true, false};
#endif
auto testGen = [&](const string& configFile,
bool hasSubseq,
const string& expRetFile,
bool beam_search) {
FLAGS_config_args = beam_search ? "beam_search=1" : "beam_search=0";
for (auto useGpu : useGpuConfs) {
testGeneration(configFile, useGpu, hasSubseq, expRetFile);
}
};
testGen(CONFIG_FILE, false, expectFile + ".nobeam", false); // no beam search
testGen(CONFIG_FILE, false, expectFile + ".beam", true); // beam search
// In hierarchical RNN, beam search and one way search are only in inner-RNN,
// outer-RNN will concat the generated inner-results (first for beam search)
// from inner-RNN. Thus, they have the same outer-results.
testGen(NEST_CONFIG_FILE,
true,
expectFile + ".nest",
false); // no beam search
testGen(NEST_CONFIG_FILE, true, expectFile + ".nest", true); // beam search
}
#endif
int main(int argc, char** argv) {
initMain(argc, argv);
initPython(argc, argv);
CHECK(argc == 1 || argc == 3);
if (argc == 3) {
modelDir = argv[1];
expectFile = argv[2];
}
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}