You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py

225 lines
8.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import unittest
import numpy as np
from scipy.special import logit
from scipy.special import expit
from op_test import OpTest
from paddle.fluid import core
def mse(x, y, weight):
n = x.shape[0]
x = x.reshape((n, -1))
y = y.reshape((n, -1))
weight = weight.reshape((n, -1))
return ((y - x)**2 * weight).sum(axis=1)
def sce(x, label, weight):
n = x.shape[0]
x = x.reshape((n, -1))
label = label.reshape((n, -1))
weight = weight.reshape((n, -1))
sigmoid_x = expit(x)
term1 = label * np.log(sigmoid_x)
term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
return ((-term1 - term2) * weight).sum(axis=1)
def box_iou(box1, box2):
b1_x1 = box1[0] - box1[2] / 2
b1_x2 = box1[0] + box1[2] / 2
b1_y1 = box1[1] - box1[3] / 2
b1_y2 = box1[1] + box1[3] / 2
b2_x1 = box2[0] - box2[2] / 2
b2_x2 = box2[0] + box2[2] / 2
b2_y1 = box2[1] - box2[3] / 2
b2_y2 = box2[1] + box2[3] / 2
b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
inter_rect_x1 = max(b1_x1, b2_x1)
inter_rect_y1 = max(b1_y1, b2_y1)
inter_rect_x2 = min(b1_x2, b2_x2)
inter_rect_y2 = min(b1_y2, b2_y2)
inter_area = max(inter_rect_x2 - inter_rect_x1, 0) * max(
inter_rect_y2 - inter_rect_y1, 0)
return inter_area / (b1_area + b2_area + inter_area)
def build_target(gtboxes, gtlabel, attrs, grid_size):
n, b, _ = gtboxes.shape
ignore_thresh = attrs["ignore_thresh"]
anchors = attrs["anchors"]
class_num = attrs["class_num"]
input_size = attrs["input_size"]
an_num = len(anchors) // 2
obj_mask = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
noobj_mask = np.ones((n, an_num, grid_size, grid_size)).astype('float32')
tx = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
ty = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
tw = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
th = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
tweight = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
tconf = np.zeros((n, an_num, grid_size, grid_size)).astype('float32')
tcls = np.zeros(
(n, an_num, grid_size, grid_size, class_num)).astype('float32')
for i in range(n):
for j in range(b):
if gtboxes[i, j, :].sum() == 0:
continue
gt_label = gtlabel[i, j]
gx = gtboxes[i, j, 0] * grid_size
gy = gtboxes[i, j, 1] * grid_size
gw = gtboxes[i, j, 2] * input_size
gh = gtboxes[i, j, 3] * input_size
gi = int(gx)
gj = int(gy)
gtbox = [0, 0, gw, gh]
max_iou = 0
for k in range(an_num):
anchor_box = [0, 0, anchors[2 * k], anchors[2 * k + 1]]
iou = box_iou(gtbox, anchor_box)
if iou > max_iou:
max_iou = iou
best_an_index = k
if iou > ignore_thresh:
noobj_mask[i, best_an_index, gj, gi] = 0
obj_mask[i, best_an_index, gj, gi] = 1
noobj_mask[i, best_an_index, gj, gi] = 0
tx[i, best_an_index, gj, gi] = gx - gi
ty[i, best_an_index, gj, gi] = gy - gj
tw[i, best_an_index, gj, gi] = np.log(gw / anchors[2 *
best_an_index])
th[i, best_an_index, gj, gi] = np.log(
gh / anchors[2 * best_an_index + 1])
tweight[i, best_an_index, gj, gi] = 2.0 - gtboxes[
i, j, 2] * gtboxes[i, j, 3]
tconf[i, best_an_index, gj, gi] = 1
tcls[i, best_an_index, gj, gi, gt_label] = 1
return (tx, ty, tw, th, tweight, tconf, tcls, obj_mask, noobj_mask)
def YoloV3Loss(x, gtbox, gtlabel, attrs):
n, c, h, w = x.shape
an_num = len(attrs['anchors']) // 2
class_num = attrs["class_num"]
x = x.reshape((n, an_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
pred_x = x[:, :, :, :, 0]
pred_y = x[:, :, :, :, 1]
pred_w = x[:, :, :, :, 2]
pred_h = x[:, :, :, :, 3]
pred_conf = x[:, :, :, :, 4]
pred_cls = x[:, :, :, :, 5:]
tx, ty, tw, th, tweight, tconf, tcls, obj_mask, noobj_mask = build_target(
gtbox, gtlabel, attrs, x.shape[2])
# print("obj_mask: ", obj_mask[0, 0, :, :])
# print("noobj_mask: ", noobj_mask[0, 0, :, :])
obj_weight = obj_mask * tweight
obj_mask_expand = np.tile(
np.expand_dims(obj_mask, 4), (1, 1, 1, 1, int(attrs['class_num'])))
loss_x = sce(pred_x, tx, obj_weight)
loss_y = sce(pred_y, ty, obj_weight)
loss_w = mse(pred_w, tw, obj_weight)
loss_h = mse(pred_h, th, obj_weight)
loss_conf_target = sce(pred_conf, tconf, obj_mask)
loss_conf_notarget = sce(pred_conf, tconf, noobj_mask)
loss_class = sce(pred_cls, tcls, obj_mask_expand)
# print("loss_xy: ", loss_x + loss_y)
# print("loss_wh: ", loss_w + loss_h)
# print("loss_conf_target: ", loss_conf_target)
# print("loss_conf_notarget: ", loss_conf_notarget)
# print("loss_class: ", loss_class)
return attrs['loss_weight_xy'] * (loss_x + loss_y) \
+ attrs['loss_weight_wh'] * (loss_w + loss_h) \
+ attrs['loss_weight_conf_target'] * loss_conf_target \
+ attrs['loss_weight_conf_notarget'] * loss_conf_notarget \
+ attrs['loss_weight_class'] * loss_class
class TestYolov3LossOp(OpTest):
def setUp(self):
self.loss_weight_xy = 1.0
self.loss_weight_wh = 1.0
self.loss_weight_conf_target = 1.0
self.loss_weight_conf_notarget = 1.0
self.loss_weight_class = 1.0
self.initTestCase()
self.op_type = 'yolov3_loss'
x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
gtlabel = np.random.randint(0, self.class_num,
self.gtbox_shape[:2]).astype('int32')
self.attrs = {
"anchors": self.anchors,
"class_num": self.class_num,
"ignore_thresh": self.ignore_thresh,
"input_size": self.input_size,
"loss_weight_xy": self.loss_weight_xy,
"loss_weight_wh": self.loss_weight_wh,
"loss_weight_conf_target": self.loss_weight_conf_target,
"loss_weight_conf_notarget": self.loss_weight_conf_notarget,
"loss_weight_class": self.loss_weight_class,
}
self.inputs = {'X': x, 'GTBox': gtbox, 'GTLabel': gtlabel}
self.outputs = {'Loss': YoloV3Loss(x, gtbox, gtlabel, self.attrs)}
def test_check_output(self):
place = core.CPUPlace()
self.check_output_with_place(place, atol=1e-3)
def test_check_grad_ignore_gtbox(self):
place = core.CPUPlace()
self.check_grad_with_place(
place, ['X'],
'Loss',
no_grad_set=set(["GTBox", "GTLabel"]),
max_relative_error=0.31)
def initTestCase(self):
self.anchors = [12, 12]
self.class_num = 5
self.ignore_thresh = 0.3
self.input_size = 416
self.x_shape = (3, len(self.anchors) // 2 * (5 + self.class_num), 5, 5)
self.gtbox_shape = (3, 5, 4)
self.loss_weight_xy = 1.2
self.loss_weight_wh = 0.8
self.loss_weight_conf_target = 2.0
self.loss_weight_conf_notarget = 1.0
self.loss_weight_class = 1.5
if __name__ == "__main__":
unittest.main()