You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_initializer_nn.py

687 lines
25 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.nn.initializer as initializer
from paddle.fluid.core import VarDesc
DELTA = 0.00001
def get_uniform_min_and_max(weight):
min_value = np.min(weight)
max_value = np.max(weight)
return min_value, max_value
def check_cast_op(op):
return op.type == 'cast' and \
op.attr('in_dtype') == VarDesc.VarType.FP32 and \
op.attr('out_dtype') == VarDesc.VarType.FP16
class TestConstantInitializer(unittest.TestCase):
def static_test_constant_initializer_common(self,
init_inst,
dtype="float32",
value_target=0.0):
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=init_inst)
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'fill_constant')
self.assertAlmostEqual(init_op.attr('value'), value_target, delta=DELTA)
paddle.disable_static()
return block
def test_constant_initializer_default_value_static(self, dtype="float32"):
"""Test the constant initializer with default value in static graph
"""
block = self.static_test_constant_initializer_common(
init_inst=initializer.Constant(), dtype=dtype, value_target=0.0)
return block
def test_constant_initializer_default_value_dygraph(self, dtype="float32"):
"""Test constant initializer with supplied value in dygraph
"""
with fluid.dygraph.guard():
linear = nn.Linear(2, 4, weight_attr=nn.initializer.Constant())
mat_target = np.ones((2, 4), dtype=dtype) * 0.0
mat_linear = linear.weight.numpy()
mismatch = np.sum(
(mat_target - mat_linear) * (mat_target - mat_linear))
self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)
def test_constant_initializer_static(self, dtype="float32"):
"""Test constant initializer with supplied value in static graph
"""
block = self.static_test_constant_initializer_common(
init_inst=initializer.Constant(2.3), dtype=dtype, value_target=2.3)
return block
def test_constant_initializer_dygraph(self, dtype="float32"):
"""Test constant initializer with supplied value in dygraph
"""
with fluid.dygraph.guard():
linear = nn.Linear(
2, 4, weight_attr=nn.initializer.Constant(value=2.0))
mat_target = np.ones((2, 4), dtype=dtype) * 2.0
mat_linear = linear.weight.numpy()
mismatch = np.sum(
(mat_target - mat_linear) * (mat_target - mat_linear))
self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)
def test_constant_initializer_fp16(self):
"""Test constant initializer with float16
"""
block = self.test_constant_initializer_default_value_static("float16")
self.assertTrue(check_cast_op(block.ops[1]))
block = self.test_constant_initializer_static("float16")
self.assertTrue(check_cast_op(block.ops[1]))
self.test_constant_initializer_default_value_dygraph("float16")
self.test_constant_initializer_dygraph("float16")
class TestKaimingInitializer(unittest.TestCase):
def static_test_kaiming_initializer_common(self,
init_inst,
dtype="float32",
uniform=False,
is_conv=False):
paddle.enable_static()
program = framework.Program()
block = program.global_block()
shape_mat = [5, 10, 15, 20] if is_conv else [5, 10]
for _ in range(2):
param = block.create_parameter(
dtype="float32",
shape=shape_mat,
lod_level=0,
name="param",
initializer=init_inst)
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
if uniform:
self.assertEqual(init_op.type, 'uniform_random')
if is_conv:
receptive_field_size = float(15 * 20)
limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
else:
limit = np.sqrt(6.0 / param.shape[0])
self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
else:
self.assertEqual(init_op.type, 'gaussian_random')
if is_conv:
receptive_field_size = float(15 * 20)
std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
else:
std = np.sqrt(2.0 / param.shape[0])
self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
paddle.disable_static()
def dygraph_test_kaiming_initializer_common(self,
init_inst,
dtype="float32",
uniform=False):
linear = nn.Linear(40, 20, weight_attr=init_inst)
def test_kaiming_dygraph(self):
self.dygraph_test_kaiming_initializer_common(
init_inst=initializer.KaimingUniform(),
dtype="float32",
uniform=True)
self.dygraph_test_kaiming_initializer_common(
init_inst=initializer.KaimingNormal(),
dtype="float32",
uniform=False)
def test_kaiming_uniform_initializer_static(self):
"""Test Kaiming unorm initializer for matrix multiply.
"""
self.static_test_kaiming_initializer_common(
init_inst=initializer.KaimingUniform(),
dtype="float32",
uniform=True,
is_conv=False)
def test_kaiming_uniform_initializer_conv_static(self):
"""Test Kaiming unorm initializer for convolutions.
"""
self.static_test_kaiming_initializer_common(
init_inst=initializer.KaimingUniform(),
dtype="float32",
uniform=True,
is_conv=True)
def test_kaiming_normal_initializer_static(self):
"""Test Kaiming normal initializer for matrix multiply.
"""
self.static_test_kaiming_initializer_common(
init_inst=initializer.KaimingNormal(),
dtype="float32",
uniform=False,
is_conv=False)
def test_kaiming_normal_initializer_conv_static(self):
"""Test Kaiming normal initializer for convolutions.
"""
self.static_test_kaiming_initializer_common(
init_inst=initializer.KaimingNormal(),
dtype="float32",
uniform=False,
is_conv=True)
class TestUniform(unittest.TestCase):
def test_uniform_common(self, dtype="float32", seed=0):
"""Test the uniform initializer with default value
"""
paddle.enable_static()
program = framework.Program()
program.random_seed = seed
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Uniform())
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'uniform_random')
self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
self.assertEqual(init_op.attr('seed'), seed)
paddle.disable_static()
return block
def test_uniform_initializer_default_value(self,
dtype="float32",
seed=0,
min_value=-1.0,
max_vlaue=1.0):
"""Test the uniform initializer with default value
"""
paddle.enable_static()
program = framework.Program()
program.random_seed = seed
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Uniform())
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'uniform_random')
self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA)
self.assertEqual(init_op.attr('seed'), seed)
paddle.disable_static()
return block
def test_uniform_initializer(self,
dtype="float32",
seed=0,
min_value=-4.2,
max_vlaue=3.1):
"""Test uniform initializer with supplied attributes
"""
paddle.enable_static()
program = framework.Program()
program.random_seed = seed
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Uniform(min_value, max_vlaue))
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'uniform_random')
self.assertAlmostEqual(init_op.attr('min'), min_value, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), max_vlaue, delta=DELTA)
paddle.disable_static()
return block
def test_uniform_initializer_two_op(self,
dtype="float32",
seed=123,
min_value=-4.2,
max_vlaue=0.0):
"""Test uniform initializer with supplied attributes
"""
paddle.enable_static()
program = framework.Program()
program.random_seed = seed
block = program.global_block()
for i in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Uniform(min_value, float(i)))
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op0 = block.ops[0]
self.assertEqual(init_op0.type, 'uniform_random')
self.assertAlmostEqual(init_op0.attr('min'), min_value, delta=DELTA)
self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
self.assertEqual(init_op0.attr("seed"), seed)
paddle.disable_static()
return block
def test_uniform_initializer_fp16(self):
"""Test uniform initializer with float16
"""
block = self.test_uniform_initializer_default_value("float16")
self.assertTrue(check_cast_op(block.ops[1]))
block = self.test_uniform_initializer(dtype="float16")
self.assertTrue(check_cast_op(block.ops[1]))
block = self.test_uniform_initializer_two_op("float16")
self.assertTrue(check_cast_op(block.ops[1]))
def test_uniform_initializer_dygraph(self):
"""Test uniform initializer in dygraph model.
"""
paddle.disable_static()
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.Uniform(
low=-0.5, high=0.5))
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)
min_value, max_value = get_uniform_min_and_max(linear.weight.numpy())
self.assertTrue(min_value >= -0.5,
'min value {} should >= -0.5'.format(min_value))
self.assertTrue(max_value <= 0.5,
'max value {} should <= 0.5'.format(max_value))
class TestNormal(unittest.TestCase):
def test_normal_initializer_default_value(self):
"""Test the normal initializer with default value
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype="float32",
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Normal())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
paddle.disable_static()
def test_normal_initializer(self, dtype="float32"):
"""Test normal initializer with supplied attributes
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.Normal(2.3, 1.9))
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
paddle.disable_static()
return block
def test_normal_initializer_fp16(self):
"""Test normal initializer with float16
"""
block = self.test_normal_initializer("float16")
self.assertTrue(check_cast_op(block.ops[1]))
def test_normal_initializer_dygraph(self):
"""Test normal initializer in dygraph model.
"""
paddle.disable_static()
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.Normal(
mean=0.0, std=2.0))
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)
class TestTruncatedNormal(unittest.TestCase):
def test_truncated_normal_initializer_default_value(self):
"""Test the truncated normal initializer with default value
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype="float32",
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.TruncatedNormal())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'truncated_gaussian_random')
self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
paddle.disable_static()
def test_truncated_normal_initializer(self, dtype="float32"):
"""Test truncated normal initializer with supplied attributes
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
block.create_parameter(
dtype=dtype,
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.TruncatedNormal(2.3, 1.9))
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'truncated_gaussian_random')
self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
paddle.disable_static()
return block
def test_truncated_normal_initializer_fp16(self):
"""Test truncated normal initializer with float16
"""
paddle.enable_static()
block = self.test_truncated_normal_initializer("float16")
self.assertTrue(check_cast_op(block.ops[1]))
def test_truncated_normal_initializer_dygraph(self):
"""Test truncated normal initializer in dygraph model.
"""
paddle.disable_static()
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.TruncatedNormal(
mean=0.0, std=2.0))
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)
class TestXavierUniform(unittest.TestCase):
def test_xavier_uniform_initializer(self):
"""Test Xavier initializer with uniform distribution on
for matrix multiply.
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
param = block.create_parameter(
dtype="float32",
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.XavierUniform())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'uniform_random')
limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
paddle.disable_static()
def test_xavier_uniform_initializer_conv(self):
"""Test Xavier initializer with uniform distribution on
for convolutions.
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
param = block.create_parameter(
dtype="float32",
shape=[5, 10, 15, 20],
lod_level=0,
name="param",
initializer=initializer.XavierUniform())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'uniform_random')
receptive_field_size = float(15 * 20)
limit = np.sqrt(6.0 / (
(param.shape[0] + param.shape[1]) * receptive_field_size))
self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
def test_xavier_uniform_initializer_dygraph(self):
"""Test xavier uniform initializer in dygraph model.
"""
paddle.disable_static()
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.XavierUniform())
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)
class TestXavierNormal(unittest.TestCase):
def test_xavier_normal_initializer(self):
"""Test Xavier initializer with normal distribution on
for matrix multiply.
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
param = block.create_parameter(
dtype="float32",
shape=[5, 10],
lod_level=0,
name="param",
initializer=initializer.XavierNormal())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
paddle.disable_static()
def test_xavier_normal_initializer_conv(self):
"""Test Xavier initializer with normal distribution on
for convolutions.
"""
paddle.enable_static()
program = framework.Program()
block = program.global_block()
for _ in range(2):
param = block.create_parameter(
dtype="float32",
shape=[5, 10, 15, 20],
lod_level=0,
name="param",
initializer=initializer.XavierNormal())
self.assertEqual(len(block.ops), 1)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'gaussian_random')
receptive_field_size = float(15 * 20)
std = np.sqrt(2.0 / (
(param.shape[0] + param.shape[1]) * receptive_field_size))
self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
self.assertEqual(init_op.attr('seed'), 0)
paddle.disable_static()
def test_xavier_normal_initializer_dygraph(self):
"""Test xavier normal initializer in dygraph model.
"""
paddle.disable_static()
weight_attr = paddle.framework.ParamAttr(
name="linear_weight",
initializer=paddle.nn.initializer.XavierNormal())
linear = paddle.nn.Linear(2, 2, weight_attr=weight_attr)
class TestAssign(unittest.TestCase):
def test_assign_initializer(self, dtype="float32"):
"""Test the numpy array initializer with supplied arguments
"""
paddle.enable_static()
import numpy
program = framework.Program()
block = program.global_block()
np_array = numpy.random.random((10000)).astype(dtype)
for _ in range(2):
block.create_parameter(
dtype=np_array.dtype,
shape=np_array.shape,
lod_level=0,
name="param",
initializer=initializer.Assign(np_array))
num_ops = 2 if dtype == "float16" else 1
self.assertEqual(len(block.ops), num_ops)
init_op = block.ops[0]
self.assertEqual(init_op.type, 'assign_value')
assert (init_op.attr('fp32_values') == np_array).all()
paddle.disable_static()
return block
def test_assign_initializer_fp16(self):
"""Test the numpy array initializer with float16
"""
block = self.test_assign_initializer("float16")
self.assertTrue(block.ops[1])
def test_assign_initializer_dygraph_1(self):
"""Test assign initializer in dygraph model.
"""
paddle.disable_static()
weight_attr_1 = paddle.framework.ParamAttr(
name="linear_weight_1",
initializer=paddle.nn.initializer.Assign(np.array([2, 2])))
linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1)
self.assertTrue((linear_1.weight.numpy() == [2.0, 2.0]).all(), '')
def test_assign_initializer_dygraph_2(self):
"""Test assign initializer in dygraph model.
"""
paddle.disable_static()
weight_attr_2 = paddle.framework.ParamAttr(
name="linear_weight_2",
initializer=paddle.nn.initializer.Assign([2, 2]))
linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2)
self.assertTrue((linear_2.weight.numpy() == [2.0, 2.0]).all(), '')
def test_assign_initializer_dygraph_3(self):
"""Test assign initializer in dygraph model.
"""
paddle.disable_static()
weight_attr_3 = paddle.framework.ParamAttr(
name="linear_weight_3",
initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)))
linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3)
self.assertTrue((linear_3.weight.numpy() == [2.0, 2.0]).all(), '')
if __name__ == '__main__':
unittest.main()