You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_input_spec.py

114 lines
4.5 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.static import InputSpec
from paddle.fluid.framework import core, convert_np_dtype_to_dtype_
class TestInputSpec(unittest.TestCase):
def test_default(self):
tensor_spec = InputSpec([3, 4])
self.assertEqual(tensor_spec.dtype,
convert_np_dtype_to_dtype_('float32'))
self.assertEqual(tensor_spec.name, None)
def test_from_tensor(self):
x_bool = fluid.layers.fill_constant(shape=[1], dtype='bool', value=True)
bool_spec = InputSpec.from_tensor(x_bool)
self.assertEqual(bool_spec.dtype, x_bool.dtype)
self.assertEqual(bool_spec.shape, x_bool.shape)
self.assertEqual(bool_spec.name, x_bool.name)
bool_spec2 = InputSpec.from_tensor(x_bool, name='bool_spec')
self.assertEqual(bool_spec2.name, bool_spec2.name)
def test_from_numpy(self):
x_numpy = np.ones([10, 12])
x_np_spec = InputSpec.from_numpy(x_numpy)
self.assertEqual(x_np_spec.dtype,
convert_np_dtype_to_dtype_(x_numpy.dtype))
self.assertEqual(x_np_spec.shape, x_numpy.shape)
self.assertEqual(x_np_spec.name, None)
x_numpy2 = np.array([1, 2, 3, 4]).astype('int64')
x_np_spec2 = InputSpec.from_numpy(x_numpy2, name='x_np_int64')
self.assertEqual(x_np_spec2.dtype,
convert_np_dtype_to_dtype_(x_numpy2.dtype))
self.assertEqual(x_np_spec2.shape, x_numpy2.shape)
self.assertEqual(x_np_spec2.name, 'x_np_int64')
def test_shape_with_none(self):
tensor_spec = InputSpec([None, 4, None], dtype='int8', name='x_spec')
self.assertEqual(tensor_spec.dtype, convert_np_dtype_to_dtype_('int8'))
self.assertEqual(tensor_spec.name, 'x_spec')
self.assertEqual(tensor_spec.shape, (-1, 4, -1))
def test_shape_raise_error(self):
# 1. shape should only contain int and None.
with self.assertRaises(ValueError):
tensor_spec = InputSpec(['None', 4, None], dtype='int8')
# 2. shape should be type `list` or `tuple`
with self.assertRaises(TypeError):
tensor_spec = InputSpec(4, dtype='int8')
# 3. len(shape) should be greater than 0.
with self.assertRaises(ValueError):
tensor_spec = InputSpec([], dtype='int8')
def test_batch_and_unbatch(self):
tensor_spec = InputSpec([10])
# insert batch_size
batch_tensor_spec = tensor_spec.batch(16)
self.assertEqual(batch_tensor_spec.shape, (16, 10))
# unbatch
unbatch_spec = batch_tensor_spec.unbatch()
self.assertEqual(unbatch_spec.shape, (10, ))
# 1. `unbatch` requires len(shape) > 1
with self.assertRaises(ValueError):
unbatch_spec.unbatch()
# 2. `batch` requires len(batch_size) == 1
with self.assertRaises(ValueError):
tensor_spec.batch([16, 12])
# 3. `batch` requires type(batch_size) == int
with self.assertRaises(TypeError):
tensor_spec.batch('16')
def test_eq_and_hash(self):
tensor_spec_1 = InputSpec([10, 16], dtype='float32')
tensor_spec_2 = InputSpec([10, 16], dtype='float32')
tensor_spec_3 = InputSpec([10, 16], dtype='float32', name='x')
tensor_spec_4 = InputSpec([16], dtype='float32', name='x')
# override ``__eq__`` according to [shape, dtype, name]
self.assertTrue(tensor_spec_1 == tensor_spec_2)
self.assertTrue(tensor_spec_1 != tensor_spec_3) # different name
self.assertTrue(tensor_spec_3 != tensor_spec_4) # different shape
# override ``__hash__`` according to [shape, dtype]
self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_2))
self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_3))
self.assertTrue(hash(tensor_spec_3) != hash(tensor_spec_4))
if __name__ == '__main__':
unittest.main()