You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
147 lines
5.2 KiB
147 lines
5.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
from paddle.fluid import core
|
|
from paddle.fluid.op import Operator
|
|
import paddle.fluid as fluid
|
|
import paddle
|
|
import paddle.nn as nn
|
|
|
|
LOOKAHEAD_K = 5
|
|
LOOKAHEAD_ALPHA = 0.2
|
|
SGD_LR = 1.0
|
|
|
|
|
|
class TestLookAhead(unittest.TestCase):
|
|
def test_lookahead_static(self):
|
|
paddle.enable_static()
|
|
place = fluid.CPUPlace()
|
|
shape = [2, 3, 8, 8]
|
|
exe = fluid.Executor(place)
|
|
train_program = fluid.Program()
|
|
startup = fluid.Program()
|
|
with fluid.program_guard(train_program, startup):
|
|
with fluid.unique_name.guard():
|
|
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
|
|
hidden = fluid.layers.fc(input=data, size=10)
|
|
loss = fluid.layers.mean(hidden)
|
|
|
|
optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR)
|
|
lookahead = paddle.incubate.optimizer.LookAhead(
|
|
optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)
|
|
lookahead.minimize(loss)
|
|
|
|
exe.run(startup)
|
|
slow_param = None
|
|
fast_param = None
|
|
for i in range(10):
|
|
if (i + 1) % LOOKAHEAD_K == 0:
|
|
slow_param = slow_param + LOOKAHEAD_ALPHA * (fast_param -
|
|
slow_param)
|
|
x = np.random.random(size=(10, 1)).astype('float32')
|
|
latest_b, b_grad = exe.run(program=train_program,
|
|
feed={'X': x},
|
|
fetch_list=[
|
|
'fc_0.b_0',
|
|
'fc_0.b_0@GRAD',
|
|
])
|
|
if i == 0:
|
|
slow_param = latest_b
|
|
if (i + 1) % LOOKAHEAD_K == 0:
|
|
self.assertAlmostEqual(
|
|
slow_param.all(), latest_b.all(), delta=5e-3)
|
|
fast_param = latest_b - SGD_LR * b_grad
|
|
|
|
def test_look_ahead_dygraph(self):
|
|
BATCH_SIZE = 16
|
|
BATCH_NUM = 4
|
|
EPOCH_NUM = 4
|
|
|
|
IMAGE_SIZE = 784
|
|
CLASS_NUM = 10
|
|
|
|
# define a random dataset
|
|
class RandomDataset(paddle.io.Dataset):
|
|
def __init__(self, num_samples):
|
|
self.num_samples = num_samples
|
|
|
|
def __getitem__(self, idx):
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
label = np.random.randint(0, CLASS_NUM - 1,
|
|
(1, )).astype('int64')
|
|
return image, label
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
class LinearNet(nn.Layer):
|
|
def __init__(self):
|
|
super(LinearNet, self).__init__()
|
|
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
|
|
self.bias = self._linear.bias
|
|
|
|
@paddle.jit.to_static
|
|
def forward(self, x):
|
|
return self._linear(x)
|
|
|
|
def train(layer, loader, loss_fn, opt):
|
|
idx = 0
|
|
slow_param = None
|
|
fast_param = None
|
|
for epoch_id in range(EPOCH_NUM):
|
|
for batch_id, (image, label) in enumerate(loader()):
|
|
idx += 1
|
|
out = layer(image)
|
|
loss = loss_fn(out, label)
|
|
loss.backward()
|
|
fast_param = layer.bias.numpy() - SGD_LR * layer.bias.grad
|
|
opt.step()
|
|
if idx == 1:
|
|
slow_param = fast_param
|
|
if idx % LOOKAHEAD_K == 0:
|
|
slow_param = slow_param + LOOKAHEAD_ALPHA * (
|
|
fast_param - slow_param)
|
|
self.assertAlmostEqual(
|
|
np.mean(slow_param),
|
|
np.mean(layer.bias.numpy()),
|
|
delta=5e-3)
|
|
opt.clear_grad()
|
|
|
|
layer = LinearNet()
|
|
loss_fn = nn.CrossEntropyLoss()
|
|
optimizer = paddle.optimizer.SGD(learning_rate=SGD_LR,
|
|
parameters=layer.parameters())
|
|
lookahead = paddle.incubate.optimizer.LookAhead(
|
|
optimizer, alpha=LOOKAHEAD_ALPHA, k=LOOKAHEAD_K)
|
|
|
|
# create data loader
|
|
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
|
|
loader = paddle.io.DataLoader(
|
|
dataset,
|
|
batch_size=BATCH_SIZE,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
num_workers=2)
|
|
|
|
train(layer, loader, loss_fn, lookahead)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|