You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_modelaverage.py

210 lines
8.1 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
import paddle.nn as nn
class TestModelAverage(unittest.TestCase):
def test_model_average_static(self):
paddle.enable_static()
place = fluid.CPUPlace()
shape = [2, 3, 8, 8]
exe = fluid.Executor(place)
train_program = fluid.Program()
startup = fluid.Program()
test_program = fluid.Program()
with fluid.program_guard(train_program, startup):
with fluid.unique_name.guard():
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
test_program = train_program.clone()
optimizer = paddle.optimizer.Momentum(
learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
# build ModelAverage optimizer
model_average = paddle.incubate.optimizer.ModelAverage(
0.15, min_average_window=2, max_average_window=10)
exe.run(startup)
for i in range(10):
x = np.random.random(size=(10, 1)).astype('float32')
latest_b, sum_1, sum_2, sum_3, num_accumulates, old_num_accumulates, num_updates = exe.run(
program=train_program,
feed={'X': x},
fetch_list=[
'fc_0.b_0', 'fc_0.b_0_sum_1_0', 'fc_0.b_0_sum_2_0',
'fc_0.b_0_sum_3_0', 'fc_0.b_0_num_accumulates_0',
'fc_0.b_0_old_num_accumulates_0', 'fc_0.b_0_num_updates_0'
])
self.assertTrue(
np.equal(
sum_1, np.zeros(
shape=[10], dtype='float32')).all())
self.assertTrue(
np.equal(
sum_2, np.zeros(
shape=[10], dtype='float32')).all())
self.assertTrue(
np.equal(
num_accumulates, np.array(
[0], dtype='int64')).all())
self.assertTrue(
np.equal(
old_num_accumulates, np.array(
[2], dtype='int64')).all())
self.assertTrue(
np.equal(
num_updates, np.array(
[10], dtype='int64')).all())
average_b = (sum_1 + sum_2 + sum_3) / (
num_accumulates + old_num_accumulates)
# apply ModelAverage
with model_average.apply(exe):
x = np.random.random(size=(10, 1)).astype('float32')
outs, b = exe.run(program=test_program,
feed={'X': x},
fetch_list=[loss.name, 'fc_0.b_0'])
self.assertAlmostEqual(np.mean(average_b), np.mean(b))
x = np.random.random(size=(10, 1)).astype('float32')
outs, b = exe.run(program=test_program,
feed={'X': x},
fetch_list=[loss.name, 'fc_0.b_0'])
self.assertAlmostEqual(np.mean(latest_b), np.mean(b))
def test_model_average_dygraph(self):
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1,
(1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
self.bias = self._linear.bias
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt, model_average):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
model_average.step()
opt.clear_grad()
model_average.clear_grad()
# print("Train Epoch {} batch {}: loss = {}, bias = {}".format(
# epoch_id, batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
sum_1 = model_average._get_accumulator('sum_1', layer.bias)
sum_2 = model_average._get_accumulator('sum_2', layer.bias)
sum_3 = model_average._get_accumulator('sum_3', layer.bias)
num_accumulates = model_average._get_accumulator('num_accumulates',
layer.bias)
old_num_accumulates = model_average._get_accumulator(
'old_num_accumulates', layer.bias)
num_updates = model_average._get_accumulator('num_updates',
layer.bias)
return ((sum_1 + sum_2 + sum_3) /
(num_accumulates + old_num_accumulates)).numpy()
def evaluate(layer, loader, loss_fn, check_param):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
self.assertAlmostEqual(
np.mean(layer.bias.numpy()),
np.mean(check_param),
delta=5e-3)
# print("Evaluate batch {}: loss = {}, bias = {}".format(
# batch_id, np.mean(loss.numpy()), layer.bias.numpy()))
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Momentum(
learning_rate=0.2, momentum=0.1, parameters=layer.parameters())
# build ModelAverage optimizer
model_average = paddle.incubate.optimizer.ModelAverage(
0.15,
parameters=layer.parameters(),
min_average_window=2,
max_average_window=10)
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
eval_loader = paddle.io.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=1)
# train
check_param = train(layer, loader, loss_fn, optimizer, model_average)
# print(check_param)
with model_average.apply(need_restore=False):
evaluate(layer, eval_loader, loss_fn, check_param)
check_param = (model_average._get_accumulator('restore',
layer.bias)).numpy()
# print(check_param)
# print("\nEvaluate With Restored Paramters")
model_average.restore()
evaluate(layer, eval_loader, loss_fn, check_param)
if __name__ == "__main__":
unittest.main()