You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_mul_nn_grad.py

144 lines
4.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
paddle.enable_static()
class TestMulGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
prog = fluid.Program()
with fluid.program_guard(prog):
x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
z = layers.mul(x=x, y=y)
gradient_checker.grad_check([x, y], z, place=place)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMulDoubleGradCheck(unittest.TestCase):
@prog_scope()
def func(self, place):
# the shape of input variable should be clearly specified, not inlcude -1.
x_shape = [7, 11]
y_shape = [11, 9]
eps = 0.005
dtype = np.float64
x = layers.data('x', x_shape, False, dtype)
x.persistable = True
y = layers.data('y', y_shape, False, dtype)
y.persistable = True
out = layers.mul(x, y)
x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
gradient_checker.double_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
class TestMatmulDoubleGradCheck(unittest.TestCase):
def setUp(self):
self.init_test()
def init_test(self):
self.x_shape = [2]
self.y_shape = [2]
self.transpose_x = False
self.transpose_y = False
@prog_scope()
def func(self, place):
eps = 0.005
dtype = np.float64
typename = "float64"
x = layers.create_parameter(
dtype=typename, shape=self.x_shape, name='x')
y = layers.create_parameter(
dtype=typename, shape=self.y_shape, name='y')
out = layers.matmul(
x, y, self.transpose_x, self.transpose_y, name='out')
x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype)
y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype)
gradient_checker.double_grad_check(
[x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
def test_grad(self):
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for p in places:
self.func(p)
def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck):
def init_test(self):
self.x_shape = [2, 3]
self.y_shape = [3, 2]
self.transpose_x = True
self.transpose_y = True
def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck):
def init_test(self):
self.x_shape = [2, 4, 3]
self.y_shape = [2, 4, 5]
self.transpose_x = True
self.transpose_y = False
def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck):
def init_test(self):
self.x_shape = [2, 3, 4, 5]
self.y_shape = [2, 3, 3, 5]
self.transpose_x = False
self.transpose_y = True
def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck):
def init_test(self):
self.x_shape = [2, 3, 4]
self.y_shape = [4, 3]
self.transpose_x = False
self.transpose_y = False
if __name__ == "__main__":
unittest.main()