You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_normalize.py

104 lines
3.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
import numpy as np
def p_normalize(x, axis=1, p=2, epsilon=1e-12, keepdims=True):
xp = np.power(np.abs(x), p)
s = np.sum(xp, axis=axis, keepdims=keepdims)
r = np.maximum(np.power(s, 1.0 / p), epsilon)
return x / r
class TestNNFunctionalNormalize(unittest.TestCase):
def setUp(self):
self.input_np = np.random.random(size=(10, 10)).astype(np.float32)
self.input_np2 = np.array([0.0, 0.0]).astype(np.float32)
self.expected0 = p_normalize(self.input_np)
self.expected1 = p_normalize(self.input_np, p=1.5)
self.expected2 = p_normalize(self.input_np, axis=0)
self.expected3 = p_normalize(self.input_np2, axis=0)
def run_imperative(self):
x = paddle.to_tensor(self.input_np)
y = F.normalize(x)
self.assertTrue(np.allclose(y.numpy(), self.expected0))
y = F.normalize(x, p=1.5)
self.assertTrue(np.allclose(y.numpy(), self.expected1))
y = F.normalize(x, axis=0)
self.assertTrue(np.allclose(y.numpy(), self.expected2))
x = paddle.to_tensor(self.input_np2)
y = F.normalize(x, axis=0)
self.assertTrue(np.allclose(y.numpy(), self.expected3))
self.assertRaises(BaseException, F.normalize, x)
def run_static(self, use_gpu=False):
x = paddle.fluid.data(name='input', shape=[10, 10], dtype='float32')
x2 = paddle.fluid.data(name='input2', shape=[2], dtype='float32')
result0 = F.normalize(x)
result1 = F.normalize(x, p=1.5)
result2 = F.normalize(x, axis=0)
result3 = F.normalize(x, name='aaa')
result4 = F.normalize(x2, axis=0)
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
static_result = exe.run(
feed={"input": self.input_np,
"input2": self.input_np2},
fetch_list=[result0, result1, result2, result4])
self.assertTrue(np.allclose(static_result[0], self.expected0))
self.assertTrue(np.allclose(static_result[1], self.expected1))
self.assertTrue(np.allclose(static_result[2], self.expected2))
self.assertTrue('aaa' in result3.name)
self.assertTrue(np.allclose(static_result[3], self.expected3))
self.assertRaises(ValueError, F.normalize, x2)
def test_cpu(self):
paddle.disable_static(place=paddle.fluid.CPUPlace())
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static()
def test_gpu(self):
if not fluid.core.is_compiled_with_cuda():
return
paddle.disable_static(place=paddle.fluid.CUDAPlace(0))
self.run_imperative()
paddle.enable_static()
with fluid.program_guard(fluid.Program()):
self.run_static(use_gpu=True)
if __name__ == "__main__":
unittest.main()