You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_onnx_export.py

79 lines
2.1 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import pickle
import unittest
import numpy as np
import paddle
from paddle.static import InputSpec
class LinearNet(paddle.nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = paddle.nn.Linear(128, 10)
def forward(self, x):
return self._linear(x)
class Logic(paddle.nn.Layer):
def __init__(self):
super(Logic, self).__init__()
def forward(self, x, y, z):
if z:
return x
else:
return y
class TestExportWithTensor(unittest.TestCase):
def setUp(self):
self.x_spec = paddle.static.InputSpec(
shape=[None, 128], dtype='float32')
def test_with_tensor():
model = LinearNet()
paddle.onnx.export(model, 'linear_net', input_spec=[self.x_spec])
class TestExportWithTensor(unittest.TestCase):
def setUp(self):
self.x = paddle.to_tensor(np.random.random((1, 128)))
def test_with_tensor(self):
model = LinearNet()
paddle.onnx.export(model, 'linear_net', input_spec=[self.x])
class TestExportPrunedGraph(unittest.TestCase):
def setUp(self):
self.x = paddle.to_tensor(np.array([1]))
self.y = paddle.to_tensor(np.array([-1]))
def test_prune_graph(self):
model = Logic()
paddle.jit.to_static(model)
out = model(self.x, self.y, z=True)
paddle.onnx.export(
model, 'pruned', input_spec=[self.x], output_spec=[out])
if __name__ == '__main__':
unittest.main()