You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.1 KiB
64 lines
2.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""This is unit test of Test shuffle_batch Op."""
|
|
|
|
from __future__ import print_function, division
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.layers as layers
|
|
from op_test import OpTest
|
|
import random
|
|
|
|
|
|
class TestShuffleBatchOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'shuffle_batch'
|
|
self.dtype = np.float64
|
|
x = np.array(
|
|
[np.arange(100), np.arange(100)]).astype(self.dtype).reshape(
|
|
[2, 100])
|
|
out = np.array(
|
|
[np.arange(100), np.arange(100)]).astype(self.dtype).reshape(
|
|
[2, 100])
|
|
self.possible_res = [
|
|
np.array([np.arange(100), np.arange(100)]).astype(self.dtype),
|
|
]
|
|
self.inputs = {'X': x, 'Seed': np.array([1]).astype('int64')}
|
|
self.outputs = {
|
|
'Out': out,
|
|
'ShuffleIdx': np.array([1, 0]).astype('int64'),
|
|
'SeedOut': np.array([1]).astype('int64')
|
|
}
|
|
self.attrs = {'startup_seed': 1}
|
|
|
|
def test_check_output(self):
|
|
self.check_output_customized(self.verify_output)
|
|
|
|
def verify_output(self, outs):
|
|
for elem in outs:
|
|
if elem.shape == self.outputs['Out'].shape:
|
|
out = elem
|
|
break
|
|
is_equal = [np.all(out == res) for res in self.possible_res]
|
|
self.assertIn(True, is_equal)
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|