You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/dgc_optimizer.py

90 lines
3.3 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle.fluid.optimizer import Momentum, DGCMomentumOptimizer
from .meta_optimizer_base import MetaOptimizerBase
import logging
class DGCOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(DGCOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
self.dgc_opt = None
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
self.meta_optimizers_black_list = []
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
user_defined_strategy):
super(DGCOptimizer, self)._set_basic_info(
loss, role_maker, user_defined_optimizer, user_defined_strategy)
opt = self.inner_opt
if not isinstance(opt, Momentum):
return
configs = self.user_defined_strategy.dgc_configs
if len(configs['sparsity']) == 0:
# default is [0.999]
configs['sparsity'] = [0.999]
self.dgc_opt = DGCMomentumOptimizer(
learning_rate=opt._learning_rate,
momentum=opt._momentum,
rampup_begin_step=configs['rampup_begin_step'],
rampup_step=configs['rampup_step'],
sparsity=configs['sparsity'],
parameter_list=opt._parameter_list,
use_nesterov=opt._use_nesterov,
num_trainers=self.role_maker.worker_num(),
regularization=opt.regularization,
grad_clip=opt._grad_clip,
name=opt._name)
def _can_apply(self):
if self.user_defined_strategy.dgc:
if not isinstance(self.inner_opt, Momentum):
logging.warn("dgc only works on Momentum optimizer")
return False
if self.role_maker.worker_num() <= 1:
logging.warn("dgc only works on multi cards")
return False
return True
return False
def _disable_strategy(self, dist_strategy):
dist_strategy.dgc = False
dist_strategy.dgc_configs = {}
def backward(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None,
callbacks=None):
return self.dgc_opt.backward(loss, startup_program, parameter_list,
no_grad_set, callbacks)
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
optimize_ops, params_grads = \
self.dgc_opt.minimize(loss, startup_program,
parameter_list, no_grad_set)
return optimize_ops, params_grads