You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
3.3 KiB
90 lines
3.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
from paddle.fluid.optimizer import Momentum, DGCMomentumOptimizer
|
|
from .meta_optimizer_base import MetaOptimizerBase
|
|
import logging
|
|
|
|
|
|
class DGCOptimizer(MetaOptimizerBase):
|
|
def __init__(self, optimizer):
|
|
super(DGCOptimizer, self).__init__(optimizer)
|
|
self.inner_opt = optimizer
|
|
self.dgc_opt = None
|
|
# we do not allow meta optimizer to be inner optimizer currently
|
|
self.meta_optimizers_white_list = []
|
|
self.meta_optimizers_black_list = []
|
|
|
|
def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
|
|
user_defined_strategy):
|
|
super(DGCOptimizer, self)._set_basic_info(
|
|
loss, role_maker, user_defined_optimizer, user_defined_strategy)
|
|
|
|
opt = self.inner_opt
|
|
if not isinstance(opt, Momentum):
|
|
return
|
|
|
|
configs = self.user_defined_strategy.dgc_configs
|
|
if len(configs['sparsity']) == 0:
|
|
# default is [0.999]
|
|
configs['sparsity'] = [0.999]
|
|
|
|
self.dgc_opt = DGCMomentumOptimizer(
|
|
learning_rate=opt._learning_rate,
|
|
momentum=opt._momentum,
|
|
rampup_begin_step=configs['rampup_begin_step'],
|
|
rampup_step=configs['rampup_step'],
|
|
sparsity=configs['sparsity'],
|
|
parameter_list=opt._parameter_list,
|
|
use_nesterov=opt._use_nesterov,
|
|
num_trainers=self.role_maker.worker_num(),
|
|
regularization=opt.regularization,
|
|
grad_clip=opt._grad_clip,
|
|
name=opt._name)
|
|
|
|
def _can_apply(self):
|
|
if self.user_defined_strategy.dgc:
|
|
if not isinstance(self.inner_opt, Momentum):
|
|
logging.warn("dgc only works on Momentum optimizer")
|
|
return False
|
|
if self.role_maker.worker_num() <= 1:
|
|
logging.warn("dgc only works on multi cards")
|
|
return False
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
def _disable_strategy(self, dist_strategy):
|
|
dist_strategy.dgc = False
|
|
dist_strategy.dgc_configs = {}
|
|
|
|
def backward(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None,
|
|
callbacks=None):
|
|
return self.dgc_opt.backward(loss, startup_program, parameter_list,
|
|
no_grad_set, callbacks)
|
|
|
|
def minimize_impl(self,
|
|
loss,
|
|
startup_program=None,
|
|
parameter_list=None,
|
|
no_grad_set=None):
|
|
optimize_ops, params_grads = \
|
|
self.dgc_opt.minimize(loss, startup_program,
|
|
parameter_list, no_grad_set)
|
|
return optimize_ops, params_grads
|