You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/distributed/fleet/meta_optimizers/parameter_server_optimizer.py

161 lines
7.1 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from paddle import fluid
from .meta_optimizer_base import MetaOptimizerBase
class ParameterServerOptimizer(MetaOptimizerBase):
def __init__(self, optimizer):
super(ParameterServerOptimizer, self).__init__(optimizer)
self.inner_opt = optimizer
# we do not allow meta optimizer to be inner optimizer currently
self.meta_optimizers_white_list = []
def _is_graph_out(self):
return False
def _can_apply(self):
if self.role_maker._is_collective:
return False
k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
return True if k_steps >= 0 else False
def _get_distributed_strategy(self):
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
k_steps = self.user_defined_strategy.a_sync_configs["k_steps"]
strategy = None
if not self.user_defined_strategy.a_sync and k_steps == 0:
strategy = StrategyFactory.create_sync_strategy()
if self.user_defined_strategy.a_sync and k_steps == 0:
strategy = StrategyFactory.create_async_strategy()
if self.user_defined_strategy.a_sync and k_steps > 0:
strategy = StrategyFactory.create_geo_strategy(k_steps)
if not strategy:
raise ValueError("k_steps must be invalid value, please check")
return strategy
def _build_trainer_programs(self, compiled_config):
from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
_main = compiled_config.origin_main_program.clone()
_startup = compiled_config.origin_startup_program.clone()
if not compiled_config.is_geo_mode():
# for main program
_main = worker.delete_optimizer_pass(_main, compiled_config)
_main = worker.distributed_ops_pass(_main, compiled_config)
_main = worker.append_send_ops_pass(_main, compiled_config)
# for startup program
_startup = worker.fake_init_ops_pass(_startup, compiled_config)
_startup = worker.init_from_server_pass(_startup, compiled_config)
_startup = worker.delet_extra_optimizes_pass(_startup,
compiled_config)
# for heter program
if self.role_maker._is_heter_parameter_server_mode:
from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker
if self.role_maker._is_heter_worker():
# for heter worker
_main = heter_worker.split_heter_worker_ops_pass(
_main, compiled_config)
else:
# for default worker
_main = heter_worker.split_trainer_ops_pass(_main,
compiled_config)
# for startup change
_startup = heter_worker.delete_startup_useless_ops_var_pass(
_startup, _main, compiled_config)
else:
_main = worker.append_send_ops_pass(_main, compiled_config)
_startup = _startup
return _main, _startup
def _build_pserver_programs(self, compiled_config):
from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server
_main = fluid.Program()
_startup = fluid.Program()
if not compiled_config.is_geo_mode():
_main = server.add_listen_and_serv_pass(_main, compiled_config)
_main = server.add_rpc_global_flags_pass(_main, compiled_config)
_main = server.add_optimizer_pass(_main, compiled_config)
_main = server.large_scale_sparse_pass(_main, _main,
compiled_config, False)
_startup = server.build_pserver_startup_program_pass(
_startup, _main, compiled_config)
_startup = server.large_scale_sparse_pass(_startup, _main,
compiled_config, True)
if not compiled_config.is_sync_mode():
_main = server.delete_unused_in_main_pass(_main,
compiled_config)
_startup = server.delete_unused_in_startup_pass(_startup, _main,
compiled_config)
else:
_main = server.add_listen_and_serv_pass(_main, compiled_config)
_main = server.add_rpc_global_flags_pass(_main, compiled_config)
_main = server.add_geo_optimizer_pass(_main, compiled_config)
_main = server.large_scale_sparse_pass(_main, _main,
compiled_config, False)
_startup = server.build_pserver_startup_program_pass(
_startup, _main, compiled_config)
_startup = server.large_scale_sparse_pass(_startup, _main,
compiled_config, True)
_startup = server.delete_unused_in_startup_pass(_startup, _main,
compiled_config)
return _main, _startup
def minimize_impl(self,
loss,
startup_program=None,
parameter_list=None,
no_grad_set=None):
self.inner_opt.minimize(loss, startup_program, parameter_list,
no_grad_set)
strategy = self._get_distributed_strategy()
_origin_main_program = loss.block.program
_origin_startup_program = startup_program
from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
compiled_config = public.CompileTimeStrategy(_origin_main_program,
_origin_startup_program,
strategy, self.role_maker)
if self.role_maker.is_worker() or self.role_maker._is_heter_worker():
main_program, startup_program = self._build_trainer_programs(
compiled_config)
elif self.role_maker.is_server():
main_program, startup_program = self._build_pserver_programs(
compiled_config)
loss.block.program = main_program
fluid.framework.switch_startup_program(startup_program)
return None, None
def _disable_strategy(self, dist_strategy):
self.user_defined_strategy.a_sync_configs = {}