You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/tests/MKLDNNTester.cpp

383 lines
12 KiB

/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
// init data layer and test layer of both dnn and reference
void MKLDNNTester::reset(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize) {
const bool trans = false;
const bool useGpu = false;
// clear
configs_.clear();
layerNames_.clear();
dataLayers_.clear();
datas_.clear();
layerMaps_.clear();
parameters_.clear();
testLayers_.clear();
// resize
configs_.resize(NUM);
layerNames_.resize(NUM);
dataLayers_.resize(NUM);
datas_.resize(NUM);
layerMaps_.resize(NUM);
parameters_.resize(NUM);
testLayers_.resize(NUM);
// reset configs and layer names
configs_[DNN] = dnn;
configs_[REF] = ref;
layerNames_[DNN] = "mkldnn"; // the first is mkldnn layer
layerNames_[REF] = "reference"; // second is reference layer
// reset others
for (size_t i = 0; i < NUM; ++i) {
configs_[i].layerConfig.set_name(layerNames_[i]);
initDataLayer(configs_[i],
&(dataLayers_[i]),
&(datas_[i]),
&(layerMaps_[i]),
layerNames_[i],
batchSize,
trans,
useGpu);
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize();
}
void MKLDNNTester::setInputImgSize() {
for (size_t n = 0; n < dataLayers_.size(); ++n) {
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
// TODO(TJ): fix me when concat and elewise ready
dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void MKLDNNTester::randomWgtDatas() {
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
for (size_t i = 0; i < parameters_[REF].size(); ++i) {
const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
parameters_[REF][i]->randomize();
dnnValue->copyFrom(*refValue);
VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
printVector(dnnValue);
}
}
// random botdata of ref layer and copy same to mkldnn
void MKLDNNTester::randomBotDatas() {
CHECK_EQ(dataLayers_.size(), NUM);
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
dataLayers_[DNN][i]->getOutputValue()->copyFrom(
*(dataLayers_[REF][i]->getOutputValue()));
VLOG(lvl_) << "Input " << i << " data:";
printMatrix(dataLayers_[REF][i]->getOutputValue());
}
}
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
printMatrix(dnnDiff);
VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
printMatrix(refDiff);
double delta = compareMatrix(dnnDiff, refDiff);
EXPECT_LE(fabs(delta), eps_);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
// break;
// }
}
}
void MKLDNNTester::checkBackwardWgts() {
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer =
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
printVector(dnn);
VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
printVector(ref);
double delta = compareVector(dnn, ref);
EXPECT_LE(fabs(delta), eps_);
}
VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
restoreWgt(dnnWgts, parameters_[DNN]);
}
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
vector<VectorPtr>& to) {
const bool useGpu = false;
to.resize(from.size());
for (size_t i = 0; i < to.size(); ++i) {
const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
to[i] = Vector::create(wgt->getSize(), useGpu);
to[i]->copyFrom(*wgt);
}
}
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
vector<ParameterPtr>& to) {
CHECK_EQ(from.size(), to.size());
for (size_t i = 0; i < from.size(); ++i) {
const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
wgt->copyFrom(*from[i]);
}
}
// clear parameters grad
void MKLDNNTester::clearWgtDiffs() {
for (size_t n = 0; n < parameters_.size(); ++n) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
}
}
}
}
void MKLDNNTester::clearBotDiffs() {
// dnn and ref
for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
void MKLDNNTester::clearTopDatas() {
for (size_t i = 0; i < testLayers_.size(); ++i) {
testLayers_[i]->getOutputValue()->zeroMem();
}
}
void MKLDNNTester::printTopDatas() {
if (!log_) {
return;
}
for (int n = 0; n < NUM; ++n) {
VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
printMatrix(testLayers_[n]->getOutputValue());
}
}
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
if (!log_) {
return;
}
std::ostringstream ostr;
m->print(ostr);
VLOG(lvl_) << std::endl << ostr.str();
}
void MKLDNNTester::printVector(const VectorPtr& v) {
if (!log_) {
return;
}
std::ostringstream ostr;
v->print(ostr, v->getSize());
VLOG(lvl_) << std::endl << ostr.str();
}
double MKLDNNTester::getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate,
const float thres) {
double delta = 0, sum = 0;
int failCnt = 0;
const double eps = 1e-5;
double maxOut = 0;
for (size_t i = 0; i < len; ++i) {
double ref = fabs(d2[i]);
double diff = fabs(d1[i] - d2[i]);
delta += diff;
sum += ref;
if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
maxOut = std::max(maxOut, diff / ref);
failCnt++;
}
}
EXPECT_TRUE(std::isnormal(sum));
EXPECT_FALSE(std::isinf(sum));
EXPECT_FALSE(std::isnan(delta));
VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
<< ", delta: " << delta / sum << ", failCnt:" << failCnt;
return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
CHECK_EQ(v1->getSize(), v2->getSize());
return getDelta(v1->getData(), v2->getData(), v1->getSize());
}
void MKLDNNTester::runOnce() {
// test forward
randomBotDatas();
dnnLayer_->forward(PASS_TRAIN);
refLayer_->forward(PASS_TRAIN);
checkForward();
// test backward
randomTopDiffs();
dnnLayer_->backward(nullptr);
refLayer_->backward(nullptr);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
clearBotDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH,
size_t inputImgW,
size_t iter,
float epsilon,
bool log,
int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
<< " vs " << ref.layerConfig.type();
ih_ = inputImgH;
iw_ = inputImgW;
iter_ = iter;
eps_ = epsilon;
log_ = log;
lvl_ = level;
// Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
if (parameters_[DNN].empty()) {
// has no paramters
return;
}
// After run some iterations, the mkldnn weight has been stored in dnnLayer
// and we can also get the mkldnn weight parameter header format.
// Weight parameter should always be index 0 (and bias index 1).
// TODO(TJ): should also consider mean and var format when batchnorm ready
int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
if (dnnWgtFmt == refWgtFmt) {
// weight format are equal, so no need check more
return;
}
// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);
// restart again with dnn weight format
reset(dnn, ref, batchSize);
// TODO(TJ): should also considerate mean and var format when batchnorm ready
parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
restoreWgt(refWgts, parameters_[REF]);
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
}
} // namespace paddle