You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
7.0 KiB
184 lines
7.0 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include "paddle/fluid/operators/mul_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::OpKernelType;
|
|
using framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* x = context.Input<Tensor>("X");
|
|
const Tensor* y = context.Input<Tensor>("Y");
|
|
Tensor* z = context.Output<Tensor>("Out");
|
|
const Tensor x_matrix =
|
|
x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*x, context.template Attr<int>("x_num_col_dims"))
|
|
: *x;
|
|
const Tensor y_matrix =
|
|
y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*y, context.template Attr<int>("y_num_col_dims"))
|
|
: *y;
|
|
z->mutable_data<T>(context.GetPlace());
|
|
auto z_dim = z->dims();
|
|
if (z_dim.size() != 2) {
|
|
z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
|
|
}
|
|
bool trans_a = false;
|
|
bool trans_b = false;
|
|
int m = x_matrix.dims()[0];
|
|
int k = x_matrix.dims()[1];
|
|
int k1 = y_matrix.dims()[0];
|
|
int n = y_matrix.dims()[1];
|
|
PADDLE_ENFORCE_EQ(
|
|
k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
|
|
T alpha = static_cast<T>(1.0);
|
|
T beta = static_cast<T>(0.0);
|
|
const T* data_a = x_matrix.data<T>();
|
|
const T* data_b = y_matrix.data<T>();
|
|
T* data_c = z->data<T>();
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int ret = xpu::fc_int16(dev_ctx.x_context(), trans_a, trans_b, m, n, k,
|
|
alpha, data_a, data_b, beta, data_c);
|
|
PADDLE_ENFORCE_EQ(
|
|
ret, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU API return wrong value[%d], please check whether "
|
|
"Baidu Kunlun Card is properly installed.",
|
|
ret));
|
|
if (z_dim.size() != 2) {
|
|
z->Resize(z_dim);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulGradXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
|
|
auto* x = ctx.Input<framework::LoDTensor>("X");
|
|
auto* y = ctx.Input<framework::LoDTensor>("Y");
|
|
auto x_matrix = x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*x, x_num_col_dims)
|
|
: static_cast<const Tensor&>(*x);
|
|
auto y_matrix = y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*y, y_num_col_dims)
|
|
: static_cast<const Tensor&>(*y);
|
|
auto* dout = ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
Tensor dout_mat;
|
|
dout_mat.Resize({framework::flatten_to_2d(x->dims(), x_num_col_dims)[0],
|
|
framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
|
|
auto* dx = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<framework::LoDTensor>(framework::GradVarName("Y"));
|
|
if (dx != nullptr) {
|
|
dx->set_lod(x->lod());
|
|
}
|
|
if (dy != nullptr) {
|
|
dy->set_lod(y->lod());
|
|
}
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dx_matrix = dx->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dx, x_num_col_dims)
|
|
: *dx;
|
|
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
|
|
// blas.MatMul(dout_mat, false, y_matrix, true, &dx_matrix);
|
|
bool trans_a = false;
|
|
bool trans_b = true;
|
|
int m = dout_mat.dims()[0];
|
|
int k = dout_mat.dims()[1];
|
|
int n = y_matrix.dims()[0];
|
|
int k1 = y_matrix.dims()[1];
|
|
PADDLE_ENFORCE_EQ(
|
|
k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
|
|
int lda = (!trans_a) ? k : m;
|
|
int ldb = (!trans_b) ? n : k;
|
|
int ldc = n;
|
|
T alpha = static_cast<T>(1.0);
|
|
T beta = static_cast<T>(0.0);
|
|
const T* data_a = dout->data<T>();
|
|
const T* data_b = y_matrix.data<T>();
|
|
T* data_c = dx_matrix.data<T>();
|
|
int ret =
|
|
xpu::gemm_int16(dev_ctx.x_context(), trans_a, trans_b, m, n, k, alpha,
|
|
data_a, lda, data_b, ldb, beta, data_c, ldc);
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU API return wrong value[%d], please check "
|
|
"where Baidu Kunlun Card is properly installed.",
|
|
ret));
|
|
}
|
|
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dy_matrix = dy->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dy, y_num_col_dims)
|
|
: *dy;
|
|
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
|
|
// blas.MatMul(x_matrix, true, dout_mat, false, &dy_matrix);
|
|
bool trans_a = true;
|
|
bool trans_b = false;
|
|
int k = x_matrix.dims()[0];
|
|
int m = x_matrix.dims()[1];
|
|
int k1 = dout_mat.dims()[0];
|
|
int n = dout_mat.dims()[1];
|
|
PADDLE_ENFORCE_EQ(
|
|
k, k1, platform::errors::InvalidArgument("Shape mistake in mul_op"));
|
|
int lda = (!trans_a) ? k : m;
|
|
int ldb = (!trans_b) ? n : k;
|
|
int ldc = n;
|
|
T alpha = static_cast<T>(1.0);
|
|
T beta = static_cast<T>(0.0);
|
|
const T* data_a = x_matrix.data<T>();
|
|
const T* data_b = dout->data<T>();
|
|
T* data_c = dy_matrix.data<T>();
|
|
int ret =
|
|
xpu::gemm_int16(dev_ctx.x_context(), trans_a, trans_b, m, n, k, alpha,
|
|
data_a, lda, data_b, ldb, beta, data_c, ldc);
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU API return wrong value[%d], please check "
|
|
"where Baidu Kunlun Card is properly installed.",
|
|
ret));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_XPU_KERNEL(
|
|
mul, ops::MulXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
REGISTER_OP_XPU_KERNEL(
|
|
mul_grad, ops::MulGradXPUKernel<paddle::platform::XPUDeviceContext, float>)
|
|
#endif
|