You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
8.6 KiB
220 lines
8.6 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <paddle/fluid/platform/device_context.h>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/operators/partial_concat_op.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
|
|
namespace plat = paddle::platform;
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
#define CEIL_DIV(x, y) (((x) + (y)-1) / (y))
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <class T>
|
|
__global__ void ConcatPartialCUDAKernel(T **in, T *out, int64_t all_length,
|
|
int64_t in_batch_len,
|
|
int64_t start_index,
|
|
int64_t out_batch_len,
|
|
int64_t part_length) {
|
|
int id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
while (id < all_length) {
|
|
int64_t bs_id = id / out_batch_len;
|
|
int64_t bs_index = id % out_batch_len;
|
|
int64_t var_id = bs_index / part_length;
|
|
int64_t part_index = bs_index % part_length;
|
|
int64_t in_id = start_index + part_index;
|
|
const T *tmp = in[var_id];
|
|
out[id] = tmp[bs_id * in_batch_len + in_id];
|
|
id += blockDim.x * gridDim.x;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
__global__ void ConcatPartialGradCUDAKernel(
|
|
T **in, const T *out, int64_t all_length, int64_t in_batch_len,
|
|
int64_t start_index, int64_t out_batch_len, int64_t part_length) {
|
|
int id = blockIdx.x * blockDim.x + threadIdx.x;
|
|
while (id < all_length) {
|
|
int64_t bs_id = id / out_batch_len;
|
|
int64_t bs_index = id % out_batch_len;
|
|
int64_t var_id = bs_index / part_length;
|
|
int64_t part_index = bs_index % part_length;
|
|
int64_t in_id = start_index + part_index;
|
|
T *tmp = in[var_id];
|
|
tmp[bs_id * in_batch_len + in_id] = out[id];
|
|
id += blockDim.x * gridDim.x;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
class PartialConcatOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto in_vars = ctx.MultiInput<Tensor>("X");
|
|
Tensor *out = ctx.Output<Tensor>("Out");
|
|
PADDLE_ENFORCE_EQ(in_vars[0] != nullptr, true,
|
|
platform::errors::InvalidArgument(
|
|
"The input of partial concat should not be null."));
|
|
|
|
auto input_dim = in_vars[0]->dims();
|
|
PADDLE_ENFORCE_EQ(input_dim.size(), 2,
|
|
platform::errors::InvalidArgument(
|
|
"Only supports 2-D array with batch size in the 1st "
|
|
"dimension and data in the 2nd."));
|
|
auto in_size = input_dim[1];
|
|
// may be negative
|
|
auto start_index = ctx.Attr<int>("start_index");
|
|
start_index = ComputeStartIndex(start_index, in_size);
|
|
|
|
auto partial_len = ctx.Attr<int>("length");
|
|
if (partial_len < 0) {
|
|
partial_len = in_size - start_index;
|
|
}
|
|
|
|
int in_num = in_vars.size();
|
|
int batch_size = input_dim[0];
|
|
int out_batch_len = partial_len * in_num;
|
|
int all_length = batch_size * out_batch_len;
|
|
|
|
constexpr size_t theory_sm_threads = 1024;
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto stream = dev_ctx.stream();
|
|
auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
|
|
auto sm_count = max_threads / theory_sm_threads;
|
|
size_t tile_size = 0;
|
|
int grids;
|
|
int blocks;
|
|
auto ComputeKernelParameter = [&](size_t length) {
|
|
if (length >= max_threads)
|
|
tile_size = 1024;
|
|
else if (length < max_threads && length > sm_count * 128)
|
|
tile_size = 512;
|
|
else if (length <= sm_count * 128)
|
|
tile_size = 256;
|
|
grids = CEIL_DIV(length, tile_size);
|
|
blocks = tile_size;
|
|
};
|
|
|
|
auto place = ctx.GetPlace();
|
|
T *out_data = out->mutable_data<T>(place);
|
|
|
|
std::vector<const T *> in_data;
|
|
for (int i = 0; i < in_num; ++i)
|
|
in_data.emplace_back(in_vars[i]->data<T>());
|
|
|
|
auto tmp_in_array = memory::Alloc(dev_ctx, in_data.size() * sizeof(T *));
|
|
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
|
|
tmp_in_array->ptr(), platform::CPUPlace(),
|
|
reinterpret_cast<void *>(in_data.data()),
|
|
in_data.size() * sizeof(T *), dev_ctx.stream());
|
|
|
|
T **in_array_data = reinterpret_cast<T **>(tmp_in_array->ptr());
|
|
ComputeKernelParameter(all_length);
|
|
ConcatPartialCUDAKernel<T><<<grids, blocks, 0, stream>>>(
|
|
in_array_data, out->data<T>(), all_length, in_size, start_index,
|
|
out_batch_len, partial_len);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PartialConcatGradOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
auto *out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto ins = ctx.MultiInput<LoDTensor>("X");
|
|
auto outs = ctx.MultiOutput<LoDTensor>(framework::GradVarName("X"));
|
|
|
|
PADDLE_ENFORCE_EQ(ins[0] != nullptr, true,
|
|
platform::errors::InvalidArgument(
|
|
"The input of partial concat should not be null."));
|
|
// all parameters
|
|
auto batch_size = ins[0]->dims()[0];
|
|
auto in_size = ins[0]->dims()[1];
|
|
// may be negative
|
|
auto start_index = ctx.Attr<int>("start_index");
|
|
start_index = ComputeStartIndex(start_index, in_size);
|
|
auto partial_len = ctx.Attr<int>("length");
|
|
if (partial_len < 0) partial_len = in_size - start_index;
|
|
|
|
auto in_num = ins.size();
|
|
auto grad_batch_len = partial_len * in_num;
|
|
auto all_length = grad_batch_len * batch_size;
|
|
// initialize
|
|
auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
|
|
.eigen_device();
|
|
for (size_t i = 0; i < outs.size(); ++i) {
|
|
outs[i]->mutable_data<T>(ctx.GetPlace());
|
|
auto dxt = framework::EigenVector<T>::Flatten(*outs[i]);
|
|
dxt.device(place) = dxt.constant(static_cast<T>(0));
|
|
}
|
|
|
|
constexpr size_t theory_sm_threads = 1024;
|
|
auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
|
auto stream = dev_ctx.stream();
|
|
auto max_threads = dev_ctx.GetMaxPhysicalThreadCount();
|
|
auto sm_count = max_threads / theory_sm_threads;
|
|
size_t tile_size = 0;
|
|
int grids;
|
|
int blocks;
|
|
auto ComputeKernelParameter = [&](size_t length) {
|
|
if (length >= max_threads)
|
|
tile_size = 1024;
|
|
else if (length < max_threads && length > sm_count * 128)
|
|
tile_size = 512;
|
|
else if (length <= sm_count * 128)
|
|
tile_size = 256;
|
|
grids = CEIL_DIV(length, tile_size);
|
|
blocks = tile_size;
|
|
};
|
|
|
|
std::vector<const T *> out_data;
|
|
for (size_t i = 0; i < in_num; ++i) {
|
|
out_data.emplace_back(outs[i]->data<T>());
|
|
}
|
|
auto tmp_out_array = memory::Alloc(dev_ctx, out_data.size() * sizeof(T *));
|
|
|
|
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, dev_ctx.GetPlace()),
|
|
tmp_out_array->ptr(), platform::CPUPlace(),
|
|
reinterpret_cast<void *>(out_data.data()),
|
|
out_data.size() * sizeof(T *), dev_ctx.stream());
|
|
|
|
T **out_grad_data = reinterpret_cast<T **>(tmp_out_array->ptr());
|
|
ComputeKernelParameter(all_length);
|
|
ConcatPartialGradCUDAKernel<T><<<grids, blocks, 0, stream>>>(
|
|
out_grad_data, out_grad->data<T>(), all_length, in_size, start_index,
|
|
grad_batch_len, partial_len);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(partial_concat, ops::PartialConcatOpCUDAKernel<float>,
|
|
ops::PartialConcatOpCUDAKernel<double>,
|
|
ops::PartialConcatOpCUDAKernel<int>,
|
|
ops::PartialConcatOpCUDAKernel<int64_t>,
|
|
ops::PartialConcatOpCUDAKernel<plat::float16>);
|
|
|
|
REGISTER_OP_CUDA_KERNEL(partial_concat_grad,
|
|
ops::PartialConcatGradOpCUDAKernel<float>,
|
|
ops::PartialConcatGradOpCUDAKernel<double>,
|
|
ops::PartialConcatGradOpCUDAKernel<int>,
|
|
ops::PartialConcatGradOpCUDAKernel<int64_t>,
|
|
ops::PartialConcatGradOpCUDAKernel<plat::float16>);
|