You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_conv2d_layer.py

282 lines
9.9 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
def _reverse_repeat_list(t, n):
return list(x for x in reversed(t) for _ in range(n))
class Conv2DTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=(16, 16),
num_channels=6,
num_filters=8,
filter_size=3,
padding=0,
padding_mode='zeros',
stride=1,
dilation=1,
groups=1,
no_bias=False,
data_format="NCHW",
dtype="float32"):
super(Conv2DTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.padding = padding
if padding_mode in {'reflect', 'replicate', 'circular'}:
_paired_padding = fluid.layers.utils.convert_to_list(padding, 2,
'padding')
self._reversed_padding_repeated_twice = _reverse_repeat_list(
_paired_padding, 2)
self.padding_mode = padding_mode
self.stride = stride
self.dilation = dilation
self.groups = groups
self.no_bias = no_bias
self.data_format = data_format
self.dtype = dtype
def setUp(self):
self.channel_last = self.data_format == "NHWC"
if self.channel_last:
input_shape = (self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
else:
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size] * 2
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
else:
self.bias = None
def fluid_layer(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
weight_attr = I.NumpyArrayInitializer(self.weight)
if self.bias is None:
bias_attr = False
else:
bias_attr = I.NumpyArrayInitializer(self.bias)
if self.padding_mode != 'zeros':
x_var = F.pad(x_var,
self._reversed_padding_repeated_twice,
mode=self.padding_mode,
data_format=self.data_format)
padding = 0
else:
padding = self.padding
y_var = fluid.layers.conv2d(
x_var,
self.num_filters,
self.filter_size,
padding=padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
param_attr=weight_attr,
bias_attr=bias_attr,
data_format=self.data_format)
feed_dict = {"input": self.input}
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, -1, -1,self.num_channels) \
if self.channel_last else (-1, self.num_channels, -1, -1)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
if self.padding_mode != 'zeros':
x_var = F.pad(x_var,
self._reversed_padding_repeated_twice,
mode=self.padding_mode,
data_format=self.data_format)
padding = 0
else:
padding = self.padding
y_var = F.conv2d(
x_var,
w_var,
b_var if not self.no_bias else None,
padding=padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = dg.to_variable(self.input)
conv = nn.Conv2d(
self.num_channels,
self.num_filters,
self.filter_size,
padding=self.padding,
padding_mode=self.padding_mode,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
place = fluid.CPUPlace()
result1 = self.fluid_layer(place)
result2 = self.functional(place)
with dg.guard(place):
result3 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
np.testing.assert_array_almost_equal(result2, result3)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv2DErrorTestCase(Conv2DTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv2DTestCase(methodName='runTest'))
suite.addTest(
Conv2DTestCase(
methodName='runTest', stride=[1, 2], dilation=2))
suite.addTest(
Conv2DTestCase(
methodName='runTest', stride=2, dilation=(2, 1)))
suite.addTest(
Conv2DTestCase(
methodName='runTest', padding="same", no_bias=True))
suite.addTest(
Conv2DTestCase(
methodName='runTest', filter_size=(3, 3), padding='valid'))
suite.addTest(Conv2DTestCase(methodName='runTest', padding=(2, 3)))
suite.addTest(Conv2DTestCase(methodName='runTest', padding=[1, 2, 2, 1]))
suite.addTest(
Conv2DTestCase(
methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
suite.addTest(Conv2DTestCase(methodName='runTest', data_format="NHWC"))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
data_format="NHWC",
padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
suite.addTest(
Conv2DTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
padding="valid"))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
filter_size=(3, 3),
padding=1,
padding_mode='reflect'))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
filter_size=(3, 3),
padding=1,
padding_mode='replicate'))
suite.addTest(
Conv2DTestCase(
methodName='runTest',
filter_size=(3, 3),
padding=1,
padding_mode='circular'))
def add_error_cases(suite):
suite.addTest(
Conv2DErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()