You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.9 KiB
91 lines
2.9 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.fluid as fluid
|
|
|
|
import numpy as np
|
|
|
|
|
|
class LeNetDygraph(fluid.dygraph.Layer):
|
|
def __init__(self, num_classes=10, classifier_activation='softmax'):
|
|
super(LeNetDygraph, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.features = nn.Sequential(
|
|
nn.Conv2d(
|
|
1, 6, 3, stride=1, padding=1),
|
|
nn.ReLU(),
|
|
nn.Pool2D(2, 'max', 2),
|
|
nn.Conv2d(
|
|
6, 16, 5, stride=1, padding=0),
|
|
nn.ReLU(),
|
|
nn.Pool2D(2, 'max', 2))
|
|
|
|
if num_classes > 0:
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(400, 120),
|
|
nn.Linear(120, 84),
|
|
nn.Linear(
|
|
84, 10, act=classifier_activation))
|
|
|
|
def forward(self, inputs):
|
|
x = self.features(inputs)
|
|
|
|
if self.num_classes > 0:
|
|
x = fluid.layers.flatten(x, 1)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
def init_weights(layer):
|
|
if type(layer) == nn.Linear:
|
|
new_weight = paddle.fill_constant(
|
|
layer.weight.shape, layer.weight.dtype, value=0.9)
|
|
layer.weight.set_value(new_weight)
|
|
new_bias = paddle.fill_constant(
|
|
layer.bias.shape, layer.bias.dtype, value=-0.1)
|
|
layer.bias.set_value(new_bias)
|
|
elif type(layer) == nn.Conv2d:
|
|
new_weight = paddle.fill_constant(
|
|
layer.weight.shape, layer.weight.dtype, value=0.7)
|
|
layer.weight.set_value(new_weight)
|
|
new_bias = paddle.fill_constant(
|
|
layer.bias.shape, layer.bias.dtype, value=-0.2)
|
|
layer.bias.set_value(new_bias)
|
|
|
|
|
|
class TestLayerApply(unittest.TestCase):
|
|
def test_apply_init_weight(self):
|
|
with fluid.dygraph.guard():
|
|
net = LeNetDygraph()
|
|
|
|
net.apply(init_weights)
|
|
|
|
for layer in net.sublayers():
|
|
if type(layer) == nn.Linear:
|
|
np.testing.assert_allclose(layer.weight.numpy(), 0.9)
|
|
np.testing.assert_allclose(layer.bias.numpy(), -0.1)
|
|
elif type(layer) == nn.Conv2d:
|
|
np.testing.assert_allclose(layer.weight.numpy(), 0.7)
|
|
np.testing.assert_allclose(layer.bias.numpy(), -0.2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|