You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/incubate/hapi/vision/models/vgg.py

245 lines
7.4 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, ReLU
from paddle.fluid.dygraph.container import Sequential
from ...download import get_weights_path_from_url
__all__ = [
'VGG',
'vgg11',
'vgg13',
'vgg16',
'vgg19',
]
model_urls = {
'vgg16': ('https://paddle-hapi.bj.bcebos.com/models/vgg16.pdparams',
'c788f453a3b999063e8da043456281ee')
}
class Classifier(fluid.dygraph.Layer):
def __init__(self, num_classes, classifier_activation='softmax'):
super(Classifier, self).__init__()
self.linear1 = Linear(512 * 7 * 7, 4096)
self.linear2 = Linear(4096, 4096)
self.linear3 = Linear(4096, num_classes, act=classifier_activation)
def forward(self, x):
x = self.linear1(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
x = self.linear2(x)
x = fluid.layers.relu(x)
x = fluid.layers.dropout(x, 0.5)
out = self.linear3(x)
return out
class VGG(fluid.dygraph.Layer):
"""VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
classifier_activation (str): activation for the last fc layer. Default: 'softmax'.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import VGG
from paddle.incubate.hapi.vision.models.vgg import make_layers
vgg11_cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
features = make_layers(vgg11_cfg)
vgg11 = VGG(features)
"""
def __init__(self,
features,
num_classes=1000,
classifier_activation='softmax'):
super(VGG, self).__init__()
self.features = features
self.num_classes = num_classes
if num_classes > 0:
classifier = Classifier(num_classes, classifier_activation)
self.classifier = self.add_sublayer("classifier",
Sequential(classifier))
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = fluid.layers.flatten(x, 1)
x = self.classifier(x)
return x
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [Pool2D(pool_size=2, pool_stride=2)]
else:
if batch_norm:
conv2d = Conv2d(in_channels, v, kernel_size=3, padding=1)
layers += [conv2d, BatchNorm(v), ReLU()]
else:
conv2d = Conv2d(in_channels, v, kernel_size=3, padding=1)
layers += [conv2d, ReLU()]
in_channels = v
return Sequential(*layers)
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B':
[64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512,
512, 512, 'M'
],
'E': [
64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512,
'M', 512, 512, 512, 512, 'M'
],
}
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
model = VGG(make_layers(
cfgs[cfg], batch_norm=batch_norm),
num_classes=1000,
**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
param, _ = fluid.load_dygraph(weight_path)
model.load_dict(param)
return model
def vgg11(pretrained=False, batch_norm=False, **kwargs):
"""VGG 11-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg11
# build model
model = vgg11()
# build vgg11 model with batch_norm
model = vgg11(batch_norm=True)
"""
model_name = 'vgg11'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'A', batch_norm, pretrained, **kwargs)
def vgg13(pretrained=False, batch_norm=False, **kwargs):
"""VGG 13-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg13
# build model
model = vgg13()
# build vgg13 model with batch_norm
model = vgg13(batch_norm=True)
"""
model_name = 'vgg13'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'B', batch_norm, pretrained, **kwargs)
def vgg16(pretrained=False, batch_norm=False, **kwargs):
"""VGG 16-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg16
# build model
model = vgg16()
# build vgg16 model with batch_norm
model = vgg16(batch_norm=True)
"""
model_name = 'vgg16'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'D', batch_norm, pretrained, **kwargs)
def vgg19(pretrained=False, batch_norm=False, **kwargs):
"""VGG 19-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
batch_norm (bool): If True, returns a model with batch_norm layer. Default: False.
Examples:
.. code-block:: python
from paddle.incubate.hapi.vision.models import vgg19
# build model
model = vgg19()
# build vgg19 model with batch_norm
model = vgg19(batch_norm=True)
"""
model_name = 'vgg19'
if batch_norm:
model_name += ('_bn')
return _vgg(model_name, 'E', batch_norm, pretrained, **kwargs)