You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.cu

226 lines
8.6 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
#include "paddle/fluid/operators/math/pooling.h"
namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {
PoolPlugin *CreatePoolPluginDeserialize(const void *buffer, size_t length) {
return new PoolPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("pool_plugin", CreatePoolPluginDeserialize);
nvinfer1::Dims PoolPlugin::getOutputDimensions(int index,
const nvinfer1::Dims *inputDims,
int nbInputs) {
assert(nbInputs == 1);
assert(index == 0);
assert(inputDims[0].nbDims == 3);
nvinfer1::Dims const &input_dims = inputDims[0];
nvinfer1::Dims output_dims = input_dims;
output_dims.d[1] = output_shape_[1];
output_dims.d[2] = output_shape_[2];
return output_dims;
}
int PoolPlugin::enqueue(int batchSize, const void *const *inputs,
void **outputs, void *workspace, cudaStream_t stream) {
auto const &input_dims = this->getInputDims(0);
int input_size = 0;
float const *idata = reinterpret_cast<float const *>(inputs[0]);
float **odatas = reinterpret_cast<float **>(outputs);
std::vector<int> input_shape = input_shape_;
std::vector<int> output_shape = output_shape_;
input_shape.insert(input_shape.begin(), batchSize);
output_shape.insert(output_shape.begin(), batchSize);
if (pool_type_ == PoolType::max) {
paddle::operators::math::MaxPool<float> pool_process;
paddle::operators::math::Pool2dDirectCUDAFunctor<
paddle::operators::math::MaxPool<float>, float>
pool2d_forward;
pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
paddings_, pool_process, true, adaptive_, odatas[0], stream);
} else if (pool_type_ == PoolType::avg) {
paddle::operators::math::AvgPool<float> pool_process;
paddle::operators::math::Pool2dDirectCUDAFunctor<
paddle::operators::math::AvgPool<float>, float>
pool2d_forward;
pool2d_forward(idata, input_shape, output_shape, ksize_, strides_,
paddings_, pool_process, true, adaptive_, odatas[0], stream);
}
return cudaGetLastError() != cudaSuccess;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
size_t PoolPluginDynamic::getSerializationSize() const { return 0; }
void PoolPluginDynamic::serialize(void *buffer) const {}
nvinfer1::DimsExprs PoolPluginDynamic::getOutputDimensions(
int output_index, const nvinfer1::DimsExprs *inputs, int nb_inputs,
nvinfer1::IExprBuilder &expr_builder) {
PADDLE_ENFORCE_EQ(nb_inputs, 1,
platform::errors::InvalidArgument(
"The Split plugin should be only one input."));
PADDLE_ENFORCE_EQ(
inputs[0].d[1]->isConstant(), true,
platform::errors::InvalidArgument("The channel dimension should be "
"static, but we found it's dynamic."));
nvinfer1::DimsExprs output(inputs[0]);
if (is_global_) {
output.d[2] = expr_builder.constant(1);
output.d[3] = expr_builder.constant(1);
return output;
}
if (adaptive_) {
output.d[2] = expr_builder.constant(ksize_[0]);
output.d[3] = expr_builder.constant(ksize_[1]);
return output;
}
auto stri_0 = expr_builder.constant(strides_[0]);
auto stri_1 = expr_builder.constant(strides_[1]);
auto tmp1_0 =
expr_builder.constant((-ksize_[0] + 2 * paddings_[0]) / strides_[0] + 1);
auto tmp1_1 =
expr_builder.constant((-ksize_[1] + 2 * paddings_[1]) / strides_[1] + 1);
auto tmp2_0 = expr_builder.constant(
(-ksize_[0] + 2 * paddings_[0] + strides_[0] - 1) / strides_[0] + 1);
auto tmp2_1 = expr_builder.constant(
(-ksize_[1] + 2 * paddings_[1] + strides_[1] - 1) / strides_[1] + 1);
auto *a_d = expr_builder.operation(nvinfer1::DimensionOperation::kCEIL_DIV,
*inputs[0].d[2], *stri_0);
auto *b_d = expr_builder.operation(nvinfer1::DimensionOperation::kCEIL_DIV,
*inputs[0].d[3], *stri_1);
if (!ceil_mode_) {
output.d[2] = expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
*a_d, *tmp1_0);
output.d[3] = expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
*b_d, *tmp1_1);
} else {
output.d[2] = expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
*a_d, *tmp2_0);
output.d[3] = expr_builder.operation(nvinfer1::DimensionOperation::kSUM,
*b_d, *tmp2_1);
}
return output;
}
bool PoolPluginDynamic::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc *in_out, int nb_inputs,
int nb_outputs) {
PADDLE_ENFORCE_NOT_NULL(
in_out, platform::errors::InvalidArgument(
"The input of swish plugin shoule not be nullptr."));
PADDLE_ENFORCE_LT(
pos, nb_inputs + nb_outputs,
platform::errors::InvalidArgument("The pos(%d) should be less than the "
"num(%d) of the input and the output.",
pos, nb_inputs + nb_outputs));
(in_out && pos < (nb_inputs + nb_outputs));
return ((in_out[pos].type == nvinfer1::DataType::kFLOAT) &&
in_out[pos].format == nvinfer1::PluginFormat::kNCHW);
}
nvinfer1::DataType PoolPluginDynamic::getOutputDataType(
int index, const nvinfer1::DataType *input_types, int nb_inputs) const {
PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
"The Pool Plugin only has one input, so the "
"index value should be 0, but get %d.",
index));
PADDLE_ENFORCE_EQ((input_types[0] == nvinfer1::DataType::kFLOAT), true,
platform::errors::InvalidArgument(
"The input type should be half or float"));
return input_types[0];
}
int PoolPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc *input_desc,
const nvinfer1::PluginTensorDesc *output_desc,
const void *const *inputs, void *const *outputs,
void *workspace, cudaStream_t stream) {
auto input_dims = input_desc[0].dims;
int n = input_dims.d[0];
int c = input_dims.d[1];
int h = input_dims.d[2];
int w = input_dims.d[3];
const float *input = static_cast<const float *>(inputs[0]);
float *output = static_cast<float *>(outputs[0]);
std::vector<int> input_shape, output_shape;
for (int i = 0; i < input_dims.nbDims; i++)
input_shape.push_back(input_dims.d[i]);
output_shape = input_shape;
std::vector<int> ksize = ksize_;
std::vector<int> paddings = paddings_;
if (is_global_) {
ksize[0] = h;
ksize[1] = w;
paddings[0] = 0;
paddings[1] = 0;
output_shape[2] = 1;
output_shape[3] = 1;
} else {
auto data_dim = CalcOutputSize({h, w}, ceil_mode_, adaptive_, ksize_,
strides_, paddings_);
output_shape[2] = data_dim[0];
output_shape[3] = data_dim[1];
}
if (pool_type_ == "max") {
paddle::operators::math::MaxPool<float> pool_process;
paddle::operators::math::Pool2dDirectCUDAFunctor<
paddle::operators::math::MaxPool<float>, float>
pool2d_forward;
pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
pool_process, true, adaptive_, output, stream);
} else if (pool_type_ == "avg") {
paddle::operators::math::AvgPool<float> pool_process;
paddle::operators::math::Pool2dDirectCUDAFunctor<
paddle::operators::math::AvgPool<float>, float>
pool2d_forward;
pool2d_forward(input, input_shape, output_shape, ksize, strides_, paddings,
pool_process, true, adaptive_, output, stream);
}
return cudaGetLastError() != cudaSuccess;
}
#endif
} // namespace plugin
} // namespace tensorrt
} // namespace inference
} // namespace paddle