You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.9 KiB
94 lines
2.9 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/math/Matrix.h"
|
|
#include "SequenceToBatch.h"
|
|
#include "GruCompute.h"
|
|
#include "Layer.h"
|
|
|
|
namespace paddle {
|
|
|
|
/**
|
|
* @brief Please refer to "Junyoung Chung, Empirical Evaluation
|
|
* of Gated Recurrent Neural Networks on Sequence Modeling".
|
|
*
|
|
* GatedRecurrentLayer takes 1 input layer with size * 3.
|
|
* Input layer is diveded into 3 equal parts: (xz_t, xr_t, xi_t).
|
|
* parameter and biasParameter is also diveded into 3 equal parts:
|
|
* - parameter consists of (U_z, U_r, U)
|
|
* - baisParameter consists of (bias_z, bias_r, bias_o)
|
|
*
|
|
* \f[
|
|
* update \ gate: z_t = actGate(xz_t + U_z * h_{t-1} + bias_z) \\
|
|
* reset \ gate: r_t = actGate(xr_t + U_r * h_{t-1} + bias_r) \\
|
|
* output \ candidate: {h}_t = actNode(xi_t + U * dot(r_t, h_{t-1}) + bias_o) \\
|
|
* hidden \ activation: h_t = dot((1-z_t), h_{t-1}) + dot(z_t, {h}_t) \\
|
|
* \f]
|
|
*
|
|
* @note
|
|
* - dot denotes "element-wise multiplication".
|
|
* - actNode is defined by config active_type
|
|
* - actGate is defined by config actvie_gate_type
|
|
*
|
|
* The config file is grumemory.
|
|
*/
|
|
|
|
class GatedRecurrentLayer : public Layer, public GruCompute {
|
|
public:
|
|
explicit GatedRecurrentLayer(const LayerConfig& config) : Layer(config) {}
|
|
|
|
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
|
|
|
void forward(PassType passType);
|
|
|
|
void backward(const UpdateCallback& callback);
|
|
|
|
void resetState();
|
|
|
|
void setState(LayerStatePtr state);
|
|
|
|
LayerStatePtr getState();
|
|
|
|
protected:
|
|
void forwardSequence(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputValue);
|
|
void backwardSequence(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputGrad);
|
|
|
|
void forwardBatch(int batchSize, size_t numSequences,
|
|
const int *starts, MatrixPtr inputValue);
|
|
void backwardBatch(int batchSize, MatrixPtr inputGrad);
|
|
|
|
protected:
|
|
std::unique_ptr<Weight> weight_;
|
|
std::unique_ptr<Weight> gateWeight_;
|
|
std::unique_ptr<Weight> stateWeight_;
|
|
std::unique_ptr<Weight> bias_;
|
|
|
|
Argument gate_;
|
|
Argument resetOutput_;
|
|
|
|
bool reversed_;
|
|
bool useBatch_;
|
|
std::unique_ptr<SequenceToBatch> batchValue_;
|
|
std::unique_ptr<SequenceToBatch> batchGrad_;
|
|
std::unique_ptr<ActivationFunction> activationGate_;
|
|
|
|
MatrixPtr prevOutput_;
|
|
};
|
|
|
|
} // namespace paddle
|