You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/elementwise/elementwise_div_op.h

310 lines
11 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
void default_elementwise_div(const framework::ExecutionContext& ctx,
const framework::Tensor* x,
const framework::Tensor* y, framework::Tensor* z) {
int axis = ctx.Attr<int>("axis");
auto x_dims = x->dims();
auto y_dims = y->dims();
if (x_dims.size() >= y_dims.size()) {
ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
DivFunctor<T>(), z);
} else {
ElementwiseComputeEx<InverseDivFunctor<T>, DeviceContext, T>(
ctx, x, y, axis, InverseDivFunctor<T>(), z);
}
}
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseDiv {
void operator()(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
framework::Tensor* z);
};
template <typename DeviceContext, typename T>
class ElementwiseDivKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::LoDTensor>("X");
auto* y = ctx.Input<framework::LoDTensor>("Y");
auto* z = ctx.Output<framework::LoDTensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
auto dims_equal = x->dims() == y->dims();
if (dims_equal) {
SameDimsElemwiseDiv<DeviceContext, T> same_dims_div;
same_dims_div(ctx, x, y, z);
} else {
default_elementwise_div<DeviceContext, T>(ctx, x, y, z);
}
}
};
template <typename T>
struct DivGradDX {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; }
};
template <>
struct DivGradDX<paddle::platform::complex64> {
HOSTDEVICE paddle::platform::complex64 operator()(
paddle::platform::complex64 x, paddle::platform::complex64 y,
paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
paddle::platform::complex64 y_conj(y.real, -y.imag);
return dout / y_conj;
}
};
template <>
struct DivGradDX<paddle::platform::complex128> {
HOSTDEVICE paddle::platform::complex128 operator()(
paddle::platform::complex128 x, paddle::platform::complex128 y,
paddle::platform::complex128 out,
paddle::platform::complex128 dout) const {
paddle::platform::complex128 y_conj(y.real, -y.imag);
return dout / y_conj;
}
};
template <typename T>
struct DivGradDY {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return -dout * out / y;
}
};
template <>
struct DivGradDY<paddle::platform::complex64> {
HOSTDEVICE paddle::platform::complex64 operator()(
paddle::platform::complex64 x, paddle::platform::complex64 y,
paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
paddle::platform::complex64 out_div_y_conj((out / y).real, -(out / y).imag);
return -dout * out_div_y_conj;
}
};
template <>
struct DivGradDY<paddle::platform::complex128> {
HOSTDEVICE paddle::platform::complex128 operator()(
paddle::platform::complex128 x, paddle::platform::complex128 y,
paddle::platform::complex128 out,
paddle::platform::complex128 dout) const {
paddle::platform::complex128 out_div_y_conj((out / y).real,
-(out / y).imag);
return -dout * out_div_y_conj;
}
};
template <typename T>
struct DivDoubleDY {
HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
return y * out * dout - x * dout;
}
};
template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout, framework::Tensor* dx,
framework::Tensor* dy) {
int axis = ctx.Attr<int>("axis");
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
const framework::Tensor* x, const framework::Tensor* y,
const framework::Tensor* out,
const framework::Tensor* dout, framework::Tensor* dx,
framework::Tensor* dy);
#endif
template <typename DeviceContext, typename T>
class ElementwiseDivGradKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Input<Tensor>("Out");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
int axis = ctx.Attr<int>("axis");
if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
elementwise_div_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
} else {
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivGradDY<T>>(
ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX<T>(),
DivGradDY<T>());
}
}
};
class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
using Tensor = framework::Tensor;
void InferShape(framework::InferShapeContext* ctx) const override {
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput("DOut")) {
ctx->ShareDim("DX", "DOut");
ctx->ShareLoD("DX", "DOut");
}
if (ctx->HasOutput(y_grad_name)) {
ctx->ShareDim("Y", y_grad_name);
ctx->ShareLoD("Y", y_grad_name);
}
if (ctx->HasOutput("DDOut")) {
ctx->ShareDim("DX", "DDOut");
ctx->ShareLoD("DX", "DDOut");
}
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Out");
#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const framework::Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const {
if (framework::IsComplexType(expected_kernel_type.data_type_)) {
// only promote inputss types when contains complex input
return framework::OpKernelType(tensor.type(), tensor.place(),
tensor.layout());
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}
};
template <typename DeviceContext, typename T>
class ElementwiseDivDoubleGradKernel : public framework::OpKernel<T> {
using Tensor = framework::Tensor;
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* Y = ctx.Input<Tensor>("Y");
auto* Out = ctx.Input<Tensor>("Out");
auto* ddX = ctx.Input<Tensor>("DDX");
auto* ddY = ctx.Input<Tensor>("DDY");
auto* dX = ctx.Input<Tensor>("DX");
auto* dY = ctx.Output<Tensor>(framework::GradVarName("Y"));
auto* dOut = ctx.Output<Tensor>("DOut");
auto* ddOut = ctx.Output<Tensor>("DDOut");
int axis = ctx.Attr<int>("axis");
if (dY) dY->mutable_data<T>(Y->dims(), ctx.GetPlace());
if (dOut) dOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
if (ddOut) ddOut->mutable_data<T>(Out->dims(), ctx.GetPlace());
// ddX_safe == null ? 0 : ddX
// ddY_safe == null ? 0 : ddY
Tensor ddX_safe, ddY_safe;
GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dX, ddX, &ddX_safe);
GetDoubleGradSafeTensor<DeviceContext, T>(ctx, Y, ddY, &ddY_safe);
// ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
// dY = Out * dX * ddY / Y - dX * ddX / Y
// dOut = - dX * ddY
// To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can
// inplace ddx
Tensor tmp;
if (dOut) {
tmp = *dOut;
} else {
auto& dev_ctx = ctx.template device_context<DeviceContext>();
tmp = ctx.AllocateTmpTensor<T, DeviceContext>(Out->dims(), dev_ctx);
}
if (dY) {
// dX_div_Y = dX / Y;
Tensor dX_div_Y = tmp;
default_elementwise_div<DeviceContext, T>(ctx, dX, Y, &dX_div_Y);
// NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the
// first output tensor is nullptr, the branch to calculate first
// output tensor will not be activated, DivGradDx function will not
// be called and can be ignored, the first branch has little effect
// on running speed.
// dY = Out * dX * ddY / Y - dX * ddX / Y
ElemwiseGradCompute<DeviceContext, T, DivGradDX<T>, DivDoubleDY<T>>(
ctx, ddX_safe, ddY_safe, *Out, dX_div_Y, axis, nullptr, dY,
DivGradDX<T>(), DivDoubleDY<T>());
}
if (ddOut) {
// ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y
default_elementwise_mul<DeviceContext, T>(ctx, Out, &ddY_safe, &tmp);
default_elementwise_sub<DeviceContext, T>(ctx, &ddX_safe, &tmp, &tmp);
default_elementwise_div<DeviceContext, T>(ctx, &tmp, Y, ddOut);
}
if (dOut) {
// dOut = - dX * ddY
default_elementwise_mul<DeviceContext, T>(ctx, dX, &ddY_safe, dOut);
auto& place =
*ctx.template device_context<DeviceContext>().eigen_device();
auto dout = framework::EigenVector<T>::Flatten(*dOut);
dout.device(place) = static_cast<T>(-1) * dout;
}
}
};
} // namespace operators
} // namespace paddle