You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2934 lines
106 KiB
2934 lines
106 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <glog/logging.h>
|
|
|
|
#include <algorithm>
|
|
#include <functional> // for multiplies
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
#include "paddle/fluid/memory/malloc.h"
|
|
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
#include "paddle/fluid/platform/transform.h"
|
|
|
|
#ifdef __NVCC__
|
|
#include <cuda.h>
|
|
#include <thrust/iterator/iterator_adaptor.h>
|
|
|
|
#include "paddle/fluid/platform/cuda_device_function.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
|
|
#define BLOCK_X 32
|
|
#define BLOCK_Y 32
|
|
#endif
|
|
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
#include "paddle/fluid/platform/for_range.h"
|
|
#define GetDivMod(dividend, divisor, div, mod) \
|
|
do { \
|
|
const auto dividend_copy = dividend; \
|
|
*div = dividend_copy / divisor; \
|
|
*mod = dividend_copy % divisor; \
|
|
} while (0)
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
/*
|
|
* Out = X ⊙ Y
|
|
* If Y's shape does not match X' shape, they will be reshaped.
|
|
* For example:
|
|
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
|
* pre=2, n=3*4, post=5
|
|
* x.shape(2, 12, 5) * y.shape(1, 12, 1).broadcast(2, 12, 5)
|
|
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
|
|
* pre=2*3, n=4*5, post=1
|
|
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
|
|
*
|
|
* New parameter: *is_run_common_broadcast* is a flag to record whether to run
|
|
* common broadcast code.
|
|
*/
|
|
inline void get_mid_dims(const framework::DDim &x_dims,
|
|
const framework::DDim &y_dims, const int axis,
|
|
int *pre, int *n, int *post,
|
|
int *is_run_common_broadcast) {
|
|
*pre = 1;
|
|
*n = 1;
|
|
*post = 1;
|
|
*is_run_common_broadcast = 0;
|
|
for (int i = 0; i < axis; ++i) {
|
|
(*pre) *= x_dims[i];
|
|
}
|
|
for (int i = 0; i < y_dims.size(); ++i) {
|
|
if (x_dims[i + axis] != y_dims[i]) {
|
|
PADDLE_ENFORCE_EQ(y_dims[i] == 1 || x_dims[i + axis] == 1, true,
|
|
platform::errors::InvalidArgument(
|
|
"Broadcast dimension mismatch. Operands "
|
|
"could not be broadcast together with the shape of "
|
|
"X = [%s] and the shape of Y = [%s]. Received [%d] "
|
|
"in X is not equal to [%d] in Y.",
|
|
x_dims, y_dims, x_dims[i + axis], y_dims[i]));
|
|
*is_run_common_broadcast = 1;
|
|
return;
|
|
}
|
|
(*n) *= y_dims[i];
|
|
}
|
|
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
|
|
(*post) *= x_dims[i];
|
|
}
|
|
}
|
|
inline int GetElementwiseIndex(const int *x_dims_array, const int max_dim,
|
|
const int *index_array) {
|
|
int index_ = 0;
|
|
for (int i = 0; i < max_dim; i++) {
|
|
if (x_dims_array[i] > 1) {
|
|
index_ = index_ * x_dims_array[i] + index_array[i];
|
|
}
|
|
}
|
|
return index_;
|
|
}
|
|
|
|
inline void UpdateElementwiseIndexArray(const int *out_dims_array,
|
|
const int max_dim, int *index_array) {
|
|
for (int i = max_dim - 1; i >= 0; --i) {
|
|
++index_array[i];
|
|
if (index_array[i] >= out_dims_array[i]) {
|
|
index_array[i] -= out_dims_array[i];
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void GetBroadcastDimsArrays(const framework::DDim &x_dims,
|
|
const framework::DDim &y_dims,
|
|
int *x_dims_array, int *y_dims_array,
|
|
int *out_dims_array, const int max_dim,
|
|
const int axis) {
|
|
PADDLE_ENFORCE_GE(
|
|
axis, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis));
|
|
PADDLE_ENFORCE_LT(axis, max_dim,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be less than %d, but received axis is %d.",
|
|
max_dim, axis));
|
|
if (x_dims.size() > y_dims.size()) {
|
|
std::fill(y_dims_array, y_dims_array + axis, 1);
|
|
if (axis + y_dims.size() < max_dim) {
|
|
std::fill(y_dims_array + axis + y_dims.size(), y_dims_array + max_dim, 1);
|
|
}
|
|
std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array);
|
|
std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array + axis);
|
|
} else {
|
|
std::fill(x_dims_array, x_dims_array + axis, 1);
|
|
if (axis + x_dims.size() < max_dim) {
|
|
std::fill(x_dims_array + axis + x_dims.size(), x_dims_array + max_dim, 1);
|
|
}
|
|
std::copy(x_dims.Get(), x_dims.Get() + x_dims.size(), x_dims_array + axis);
|
|
std::copy(y_dims.Get(), y_dims.Get() + y_dims.size(), y_dims_array);
|
|
}
|
|
|
|
for (int i = 0; i < max_dim; i++) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims_array[i] == y_dims_array[i] || x_dims_array[i] <= 1 ||
|
|
y_dims_array[i] <= 1,
|
|
true, platform::errors::InvalidArgument(
|
|
"Broadcast dimension mismatch. Operands could "
|
|
"not be broadcast together with the shape of X = [%s] and "
|
|
"the shape of Y = [%s]. Received [%d] in X is not equal to "
|
|
"[%d] in Y at i:%d.",
|
|
x_dims, y_dims, x_dims_array[i], y_dims_array[i], i));
|
|
if ((x_dims_array[i] > 1 || y_dims_array[i] > 1) ||
|
|
(x_dims_array[i] == 1 && y_dims_array[i] == 1)) {
|
|
out_dims_array[i] = std::max(x_dims_array[i], y_dims_array[i]);
|
|
} else {
|
|
out_dims_array[i] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
void CommonForwardBroadcastCPU(const framework::Tensor *x,
|
|
const framework::Tensor *y, framework::Tensor *z,
|
|
int *x_dims_array, int *y_dims_array,
|
|
int *out_dims_array, int max_dim,
|
|
const platform::CPUDeviceContext &ctx,
|
|
Functor func,
|
|
const bool is_xsize_larger = true) {
|
|
std::vector<int> index_array(max_dim, 0);
|
|
const T *x_data = x->data<T>();
|
|
const T *y_data = y->data<T>();
|
|
OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());
|
|
|
|
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
int x_index, y_index;
|
|
for (int out_index = 0; out_index < out_size; ++out_index) {
|
|
x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
|
|
y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
|
|
if (is_xsize_larger) {
|
|
out_data[out_index] = func(x_data[x_index], y_data[y_index]);
|
|
} else {
|
|
out_data[out_index] = func(y_data[y_index], x_data[x_index]);
|
|
}
|
|
|
|
UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
template <typename Functor, typename T, typename OutType>
|
|
__global__ void ElementwiseKernel(const T *x, const T *y, OutType *out, int pre,
|
|
int n, int post, int total, Functor func) {
|
|
int tid = threadIdx.x + blockDim.x * blockIdx.x;
|
|
int idx = tid / post % n;
|
|
if (tid < total) {
|
|
out[tid] = func(x[tid], y[idx]);
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType>
|
|
void ComputeElementwiseCUDA(const framework::Tensor *x,
|
|
const framework::Tensor *y, framework::Tensor *z,
|
|
int pre, int n, int post,
|
|
const platform::CUDADeviceContext &ctx,
|
|
Functor func, const bool is_xsize_larger = true) {
|
|
const T *x_data = x->data<T>();
|
|
const T *y_data = y->data<T>();
|
|
OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());
|
|
|
|
int numel = pre * n * post;
|
|
int threads = 256;
|
|
int blocks = (numel + threads - 1) / threads;
|
|
if (is_xsize_larger) {
|
|
ElementwiseKernel<Functor, T,
|
|
OutType><<<blocks, threads, 0, ctx.stream()>>>(
|
|
x_data, y_data, out_data, pre, n, post, numel, func);
|
|
} else {
|
|
ElementwiseKernel<Functor, T,
|
|
OutType><<<blocks, threads, 0, ctx.stream()>>>(
|
|
y_data, x_data, out_data, pre, n, post, numel, func);
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
__global__ void CommonForwardBroadcastCUDAKernel(
|
|
const int *x_strides_array, const int *y_strides_array,
|
|
const int *out_dims_array, const T *x, const T *y, OutType *out,
|
|
int out_size, int max_dim, Functor func, const bool is_xsize_larger) {
|
|
for (int out_index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
out_index < out_size; out_index += blockDim.x * gridDim.x) {
|
|
int x_index = 0;
|
|
int y_index = 0;
|
|
int out_index_quotient = out_index;
|
|
int remainder = 0;
|
|
#pragma unroll
|
|
for (int i = max_dim - 1; i >= 0; --i) {
|
|
GetDivMod(out_index_quotient, out_dims_array[i], &out_index_quotient,
|
|
&remainder);
|
|
x_index += remainder * x_strides_array[i];
|
|
y_index += remainder * y_strides_array[i];
|
|
}
|
|
if (is_xsize_larger) {
|
|
out[out_index] = func(x[x_index], y[y_index]);
|
|
} else {
|
|
out[out_index] = func(y[y_index], x[x_index]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename T, typename OutType = T>
|
|
void CommonForwardBroadcastCUDA(
|
|
const framework::Tensor *x, const framework::Tensor *y,
|
|
framework::Tensor *z, int *x_dims_array, int *y_dims_array,
|
|
int *out_dims_array, int max_dim, const platform::CUDADeviceContext &ctx,
|
|
Functor func, const bool is_xsize_larger = true) {
|
|
const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
|
|
auto cplace = platform::CPUPlace();
|
|
const T *x_data = x->data<T>();
|
|
const T *y_data = y->data<T>();
|
|
OutType *out_data = z->mutable_data<OutType>(ctx.GetPlace());
|
|
|
|
std::vector<int> x_strides_array(max_dim);
|
|
std::vector<int> y_strides_array(max_dim);
|
|
int x_stride = 1;
|
|
int y_stride = 1;
|
|
for (int i = max_dim - 1; i >= 0; i--) {
|
|
x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
|
|
y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
|
|
x_stride *= x_dims_array[i];
|
|
y_stride *= y_dims_array[i];
|
|
}
|
|
|
|
int bytes = max_dim * sizeof(int);
|
|
auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *x_strides_array_gpu =
|
|
reinterpret_cast<int *>(x_strides_array_tmp->ptr());
|
|
memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *y_strides_array_gpu =
|
|
reinterpret_cast<int *>(y_strides_array_tmp->ptr());
|
|
memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
|
|
memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
|
|
ctx.stream());
|
|
|
|
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
dim3 gird_size = dim3(
|
|
(out_size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
|
|
dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
|
|
|
|
CommonForwardBroadcastCUDAKernel<
|
|
Functor, T, OutType><<<gird_size, block_size, 0, ctx.stream()>>>(
|
|
x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu, x_data,
|
|
y_data, out_data, out_size, max_dim, func, is_xsize_larger);
|
|
}
|
|
|
|
#endif // __NVCC__
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
void CommonGradBroadcastCPU(
|
|
const framework::Tensor &x, const framework::Tensor &y,
|
|
const framework::Tensor &out, const framework::Tensor &dout,
|
|
framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
|
|
int *y_dims_array, int *out_dims_array, int max_dim,
|
|
const platform::CPUDeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
|
|
std::vector<int> index_array(max_dim, 0);
|
|
const T *x_data = x.data<T>();
|
|
const T *y_data = y.data<T>();
|
|
const T *out_data = out.data<T>();
|
|
const T *dout_data = dout.data<T>();
|
|
T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
|
|
T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
|
|
if (dx_data != nullptr) {
|
|
memset(dx_data, 0, dx->numel() * sizeof(T));
|
|
}
|
|
if (dy_data != nullptr) {
|
|
memset(dy_data, 0, dy->numel() * sizeof(T));
|
|
}
|
|
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
int x_index, y_index;
|
|
for (int out_index = 0; out_index < out_size; ++out_index) {
|
|
x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
|
|
y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
|
|
if (dx_data != nullptr) {
|
|
dx_data[x_index] += dx_op(x_data[x_index], y_data[y_index],
|
|
out_data[out_index], dout_data[out_index]);
|
|
}
|
|
if (dy_data != nullptr) {
|
|
dy_data[y_index] += dy_op(x_data[x_index], y_data[y_index],
|
|
out_data[out_index], dout_data[out_index]);
|
|
}
|
|
|
|
UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
|
|
}
|
|
}
|
|
|
|
inline void ComputeBroadcastKernelSize(int *x_dims_array, int *out_dims_array,
|
|
int *x_blocks, int *x_threads,
|
|
int max_dim) {
|
|
*x_blocks = 1;
|
|
*x_threads = 1;
|
|
for (int i = 0; i < max_dim; i++) {
|
|
if (x_dims_array[i] == out_dims_array[i]) {
|
|
*x_blocks *= x_dims_array[i];
|
|
} else {
|
|
*x_threads *= out_dims_array[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void ComputeBroadcastTranspositionArray(const int *x_one_indexs,
|
|
int *x_trans_indexs,
|
|
const int max_dim,
|
|
const int x_one_size) {
|
|
int diff = max_dim - x_one_size;
|
|
std::copy_n(x_one_indexs, x_one_size, x_trans_indexs + diff);
|
|
int p = 0;
|
|
int q = diff;
|
|
for (int i = 0; i < max_dim; ++i) {
|
|
if (q < max_dim && i == x_trans_indexs[q]) {
|
|
++q;
|
|
} else {
|
|
x_trans_indexs[p++] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
|
|
const T *x, const T *y, const T *out, const T *dout, int h, int w,
|
|
bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
|
|
int j = blockIdx.x;
|
|
int i = threadIdx.x;
|
|
int tid = threadIdx.x;
|
|
T val(0);
|
|
if (is_xsize_larger) {
|
|
do {
|
|
int x_offset = i * w + j;
|
|
if (dx) {
|
|
dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dy) {
|
|
val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
} while (i < h);
|
|
|
|
if (dy) {
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
} else { // x.dims < y.dims, broadcast for x.
|
|
do {
|
|
int y_offset = i * w + j;
|
|
if (dy) {
|
|
dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
if (dx) {
|
|
val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
} while (i < h);
|
|
|
|
if (dx) {
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dx[j] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// suppose use 2D block is fast because more parallel
|
|
// and memory coalesced
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static __global__ void FastElemwiseGradBroadcast1CUDAKernel(
|
|
const T *x, const T *y, const T *out, const T *dout, int h, int w,
|
|
bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
|
|
__shared__ T sdata[BLOCK_Y][BLOCK_X + 1];
|
|
|
|
T val(0);
|
|
size_t width_stride = gridDim.x * blockDim.x;
|
|
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
|
|
size_t full_width =
|
|
(w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
|
|
size_t full_height =
|
|
(h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
|
|
if (is_xsize_larger) {
|
|
for (int m = idx; m < full_width; m += width_stride) {
|
|
sdata[threadIdx.y][threadIdx.x] = 0;
|
|
for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
|
|
int x_offset = n * w + m;
|
|
if (dx && m < w && n < h) {
|
|
dx[x_offset] =
|
|
dx_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dy) {
|
|
if (m < w && n < h) {
|
|
T val = dy_op(x[x_offset], y[m], out[x_offset], dout[x_offset]);
|
|
sdata[threadIdx.y][threadIdx.x] += val;
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
if (dy) {
|
|
T my_val = sdata[threadIdx.x][threadIdx.y];
|
|
for (int i = warpSize >> 1; i > 0; i >>= 1)
|
|
my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
|
|
__syncthreads();
|
|
if ((threadIdx.x == 0)) {
|
|
sdata[0][threadIdx.y] = my_val;
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y == 0 && m < w) {
|
|
dy[m] = sdata[0][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
} else { // x.dims < y.dims, broadcast for x.
|
|
for (int m = idx; m < full_width; m += width_stride) {
|
|
sdata[threadIdx.y][threadIdx.x] = 0;
|
|
for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
|
|
int y_offset = n * w + m;
|
|
if (dy && m < w && n < h) {
|
|
dy[y_offset] =
|
|
dy_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
if (dx) {
|
|
if (m < w && n < h) {
|
|
T val = dx_op(x[m], y[y_offset], out[y_offset], dout[y_offset]);
|
|
sdata[threadIdx.y][threadIdx.x] += val;
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
if (dx) {
|
|
T my_val = sdata[threadIdx.x][threadIdx.y];
|
|
for (int i = warpSize >> 1; i > 0; i >>= 1)
|
|
my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
|
|
__syncthreads();
|
|
if ((threadIdx.x == 0)) {
|
|
sdata[0][threadIdx.y] = my_val;
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y == 0 && m < w) {
|
|
dx[m] = sdata[0][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DX_OP>
|
|
__global__ void CommonGradBroadcastCUDAKernel(
|
|
const int *x_strides_array, const int *y_strides_array,
|
|
const int *out_dims_array, const int *y_strides_order,
|
|
const int *y_dims_order, const T *x, const T *y, const T *out,
|
|
const T *dout, T *dx, int out_size, int max_dim, int thread_num,
|
|
DX_OP dx_op) {
|
|
T val(0);
|
|
int i = blockIdx.x;
|
|
int tid = threadIdx.x;
|
|
for (int j = tid; j < thread_num; j += blockDim.x) {
|
|
const int X_index = i * thread_num + j;
|
|
int out_index = X_index;
|
|
int C_index = 0;
|
|
int B_index = i * thread_num + j;
|
|
int remainder = 0;
|
|
#pragma unroll
|
|
for (int d = max_dim - 1; d >= 0; --d) {
|
|
GetDivMod(B_index, y_dims_order[d], &B_index, &remainder);
|
|
C_index += remainder * y_strides_order[d];
|
|
}
|
|
int x_index = 0;
|
|
int y_index = 0;
|
|
int C_index_val = C_index;
|
|
#pragma unroll
|
|
for (int d = max_dim - 1; d >= 0; --d) {
|
|
GetDivMod(C_index_val, out_dims_array[d], &C_index_val, &remainder);
|
|
x_index += remainder * x_strides_array[d];
|
|
y_index += remainder * y_strides_array[d];
|
|
}
|
|
out_index = C_index;
|
|
val += dx_op(x[x_index], y[y_index], out[out_index], dout[out_index]);
|
|
}
|
|
val = paddle::platform::reduceSum(val, tid, thread_num);
|
|
if (threadIdx.x == 0) {
|
|
dx[i] = val;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DY_OP>
|
|
static __global__ void CommonGradBroadcast1CUDAKernelHeight(
|
|
const T *x, const T *y, const T *out, const T *dout, int h, int w,
|
|
DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
|
|
int j = blockIdx.x;
|
|
int i = threadIdx.x;
|
|
int tid = threadIdx.x;
|
|
T val(0);
|
|
|
|
if (is_y) {
|
|
do {
|
|
int out_offset = i * w + j;
|
|
int x_offset = (i % x_h) * x_w + j % x_w;
|
|
if (dy) {
|
|
val += dy_op(x[x_offset], y[j], out[out_offset], dout[out_offset]);
|
|
}
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
} while (i < h);
|
|
|
|
if (dy) {
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
} else {
|
|
do {
|
|
int out_offset = i * w + j;
|
|
int y_offset = (i % x_h) * x_w + j % x_w;
|
|
if (dy) {
|
|
val += dy_op(x[j], y[y_offset], out[out_offset], dout[out_offset]);
|
|
}
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
} while (i < h);
|
|
|
|
if (dy) {
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DY_OP>
|
|
static __global__ void FastCommonGradBroadcastCUDAKernelHeight(
|
|
const T *x, const T *y, const T *out, const T *dout, int h, int w,
|
|
DY_OP dy_op, T *dy, int x_h, int x_w, bool is_y) {
|
|
__shared__ T sdata[BLOCK_Y][BLOCK_X + 1];
|
|
|
|
T val(0);
|
|
size_t width_stride = gridDim.x * blockDim.x;
|
|
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
|
|
size_t full_width =
|
|
(w & (~((uint64_t)(BLOCK_X - 1)))) + ((w & (BLOCK_X - 1)) ? BLOCK_X : 0);
|
|
size_t full_height =
|
|
(h & (~((uint64_t)(BLOCK_Y - 1)))) + ((h & (BLOCK_Y - 1)) ? BLOCK_Y : 0);
|
|
if (is_y) {
|
|
for (int m = idx; m < full_width; m += width_stride) {
|
|
sdata[threadIdx.y][threadIdx.x] = 0;
|
|
for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
|
|
int out_offset = n * w + m;
|
|
int x_offset = (n % x_h) * x_w + m % x_w;
|
|
if (dy) {
|
|
if (m < w && n < h) {
|
|
T val = dy_op(x[x_offset], y[m], out[out_offset], dout[out_offset]);
|
|
sdata[threadIdx.y][threadIdx.x] += val;
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
if (dy) {
|
|
T my_val = sdata[threadIdx.x][threadIdx.y];
|
|
for (int i = warpSize >> 1; i > 0; i >>= 1) {
|
|
my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
|
|
}
|
|
__syncthreads();
|
|
if ((threadIdx.x == 0)) {
|
|
sdata[0][threadIdx.y] = my_val;
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y == 0 && m < w) {
|
|
dy[m] = sdata[0][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (int m = idx; m < full_width; m += width_stride) {
|
|
sdata[threadIdx.y][threadIdx.x] = 0;
|
|
for (int n = threadIdx.y; n < full_height; n += BLOCK_Y) {
|
|
int out_offset = n * w + m;
|
|
int y_offset = (n % x_h) * x_w + m % x_w;
|
|
if (dy) {
|
|
if (m < w && n < h) {
|
|
T val = dy_op(x[m], y[y_offset], out[out_offset], dout[out_offset]);
|
|
sdata[threadIdx.y][threadIdx.x] += val;
|
|
}
|
|
__syncthreads();
|
|
}
|
|
}
|
|
if (dy) {
|
|
T my_val = sdata[threadIdx.x][threadIdx.y];
|
|
for (int i = warpSize >> 1; i > 0; i >>= 1) {
|
|
my_val += platform::CudaShuffleXorSync(0xFFFFFFFF, my_val, i);
|
|
}
|
|
__syncthreads();
|
|
if ((threadIdx.x == 0)) {
|
|
sdata[0][threadIdx.y] = my_val;
|
|
}
|
|
__syncthreads();
|
|
if (threadIdx.y == 0 && m < w) {
|
|
dy[m] = sdata[0][threadIdx.x];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DY_OP, typename DX_OP>
|
|
static __global__ void FastCommonGradBroadcastAllCUDAKernel(
|
|
const T *x, const T *y, const T *out, const T *dout, int pre, int n,
|
|
int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
|
|
int tid = threadIdx.x;
|
|
int bid = blockIdx.x;
|
|
|
|
T val(0);
|
|
if (is_xsize_larger) {
|
|
for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
|
|
int b_i = bid / post;
|
|
int b_j = bid % post;
|
|
int x_offset = b_i * n * post + i * post + b_j;
|
|
int y_offset = b_i * post + b_j;
|
|
if (dx) {
|
|
dx[x_offset] =
|
|
dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dy) {
|
|
val += dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
|
|
}
|
|
}
|
|
if (dy) {
|
|
int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (tid == 0) {
|
|
dy[bid] = val;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
|
|
int b_i = bid / post;
|
|
int b_j = bid % post;
|
|
int y_offset = b_i * n * post + i * post + b_j;
|
|
int x_offset = b_i * post + b_j;
|
|
if (dy) {
|
|
dy[y_offset] =
|
|
dy_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dx) {
|
|
val += dx_op(x[x_offset], y[y_offset], out[x_offset], dout[x_offset]);
|
|
}
|
|
}
|
|
if (dx) {
|
|
int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (tid == 0) {
|
|
dx[bid] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename OP>
|
|
static __global__ void FastCommonGradBroadcastOneCUDAKernel(
|
|
const T *x, const T *y, const T *out, const T *dout, int pre, int n,
|
|
int post, int y_pre, int y_n, int y_post, bool is_xsize, OP op, T *dd) {
|
|
int tid = threadIdx.x;
|
|
int bid = blockIdx.x;
|
|
|
|
T val(0);
|
|
if (is_xsize) {
|
|
// do reduce for x
|
|
for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
|
|
int b_i = bid / post;
|
|
int b_j = bid % post;
|
|
int x_offset = b_i * n * post + b_j;
|
|
int out_offset = b_i * n * post + i * post + b_j;
|
|
|
|
// Get y pre rows id with x post and y_pre.
|
|
int b_yi = bid / (post * y_pre);
|
|
int b_yj = bid % y_post;
|
|
int y_offset = b_yi * y_n + i * y_post + b_yj;
|
|
|
|
if (dd) {
|
|
val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
|
|
}
|
|
}
|
|
if (dd) {
|
|
int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (tid == 0) {
|
|
dd[bid] = val;
|
|
}
|
|
}
|
|
} else {
|
|
// do reduce for y
|
|
for (int i = tid; i < n; i += ELEMWISE_MAX_BLOCK_DIM) {
|
|
int b_i = bid / post;
|
|
int b_j = bid % post;
|
|
int y_offset = b_i * n * post + b_j;
|
|
int out_offset = b_i * n * post + i * post + b_j;
|
|
|
|
int b_yi = bid / (post * y_pre);
|
|
int b_yj = bid % y_post;
|
|
int x_offset = b_yi * y_n + i * y_post + b_yj;
|
|
|
|
if (dd) {
|
|
val += op(x[x_offset], y[y_offset], out[out_offset], dout[out_offset]);
|
|
}
|
|
}
|
|
if (dd) {
|
|
int h = n > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : n;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (tid == 0) {
|
|
dd[bid] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check input can be split into 2 parts
|
|
static inline bool SplitDims(const std::vector<int> &y_broadcast_pos,
|
|
int max_dim) {
|
|
bool can_split_dim2 = true;
|
|
// must at start or end.
|
|
if (y_broadcast_pos[0] != 0 &&
|
|
y_broadcast_pos[y_broadcast_pos.size() - 1] != max_dim - 1) {
|
|
can_split_dim2 = false;
|
|
} else {
|
|
for (int i = 1; i < y_broadcast_pos.size(); ++i) {
|
|
// dim must be continue
|
|
if (y_broadcast_pos[i] != y_broadcast_pos[i - 1] + 1) {
|
|
can_split_dim2 = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return can_split_dim2;
|
|
}
|
|
|
|
// Suppose only has contiguous dims
|
|
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
|
|
for (int i = 1; i < broadcast_pos.size(); ++i) {
|
|
if (broadcast_pos[i] != broadcast_pos[i - 1] + 1) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
void CommonGradBroadcastCUDA(
|
|
const framework::Tensor &x, const framework::Tensor &y,
|
|
const framework::Tensor &out, const framework::Tensor &dout,
|
|
framework::Tensor *dx, framework::Tensor *dy, int *x_dims_array,
|
|
int *y_dims_array, int *out_dims_array, int max_dim,
|
|
const platform::CUDADeviceContext &ctx, DX_OP dx_op, DY_OP dy_op) {
|
|
const auto gplace = BOOST_GET_CONST(platform::CUDAPlace, ctx.GetPlace());
|
|
auto cplace = platform::CPUPlace();
|
|
const T *x_data = x.data<T>();
|
|
const T *y_data = y.data<T>();
|
|
const T *out_data = out.data<T>();
|
|
const T *dout_data = dout.data<T>();
|
|
T *dx_data = dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace());
|
|
T *dy_data = dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace());
|
|
|
|
std::vector<int> x_one_indexs;
|
|
std::vector<int> y_one_indexs;
|
|
for (int i = 0; i < max_dim; i++) {
|
|
if (x_dims_array[i] != y_dims_array[i]) {
|
|
if (x_dims_array[i] == 1) {
|
|
x_one_indexs.push_back(i);
|
|
}
|
|
if (y_dims_array[i] == 1) {
|
|
y_one_indexs.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<int> x_trans_indexs(max_dim);
|
|
std::vector<int> y_trans_indexs(max_dim);
|
|
ComputeBroadcastTranspositionArray(x_one_indexs.data(), x_trans_indexs.data(),
|
|
max_dim, x_one_indexs.size());
|
|
ComputeBroadcastTranspositionArray(y_one_indexs.data(), y_trans_indexs.data(),
|
|
max_dim, y_one_indexs.size());
|
|
|
|
// compute array stride for cuda kernel;
|
|
// e.g. x.dims=[2,3,4], x_stride=[12,4,1]
|
|
std::vector<int> x_strides_array(max_dim);
|
|
std::vector<int> y_strides_array(max_dim);
|
|
std::vector<int> out_strides_array(max_dim);
|
|
int x_stride = 1;
|
|
int y_stride = 1;
|
|
int z_stride = 1;
|
|
for (int i = max_dim - 1; i >= 0; i--) {
|
|
x_strides_array[i] = x_dims_array[i] == 1 ? 0 : x_stride;
|
|
y_strides_array[i] = y_dims_array[i] == 1 ? 0 : y_stride;
|
|
out_strides_array[i] = z_stride;
|
|
x_stride *= x_dims_array[i];
|
|
y_stride *= y_dims_array[i];
|
|
z_stride *= out_dims_array[i];
|
|
}
|
|
|
|
std::vector<int> x_strides_order(max_dim);
|
|
std::vector<int> y_strides_order(max_dim);
|
|
std::vector<int> x_dims_order(max_dim);
|
|
std::vector<int> y_dims_order(max_dim);
|
|
for (int i = 0; i < max_dim; ++i) {
|
|
x_strides_order[i] = out_strides_array[x_trans_indexs[i]];
|
|
y_strides_order[i] = out_strides_array[y_trans_indexs[i]];
|
|
x_dims_order[i] = out_dims_array[x_trans_indexs[i]];
|
|
y_dims_order[i] = out_dims_array[y_trans_indexs[i]];
|
|
}
|
|
std::vector<int> x_broadcast_pos;
|
|
std::vector<int> y_broadcast_pos;
|
|
|
|
int bytes = max_dim * sizeof(int);
|
|
|
|
for (int i = 0; i < max_dim; ++i) {
|
|
if (x_dims_array[i] != out_dims_array[i] && x_dims_array[i] == 1) {
|
|
x_broadcast_pos.emplace_back(i);
|
|
}
|
|
if (y_dims_array[i] != out_dims_array[i] && y_dims_array[i] == 1) {
|
|
y_broadcast_pos.emplace_back(i);
|
|
}
|
|
}
|
|
|
|
auto stream = ctx.stream();
|
|
bool can_split_x = false;
|
|
bool can_split_y = false;
|
|
|
|
auto FastCommonCUDAF = [&](const std::vector<int> &broadcast_pos, bool is_y) {
|
|
int h =
|
|
std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
|
|
1, std::multiplies<int>());
|
|
int w =
|
|
std::accumulate(out_dims_array + broadcast_pos.size(),
|
|
out_dims_array + max_dim, 1, std::multiplies<int>());
|
|
|
|
VLOG(3) << "FastCommonCUDAF elementwise w:" << w << " h:" << h
|
|
<< " is_y:" << is_y;
|
|
|
|
int split_h;
|
|
int split_w;
|
|
int kh = h;
|
|
int kw = w;
|
|
|
|
if (is_y) {
|
|
split_h =
|
|
std::accumulate(x_dims_array, x_dims_array + broadcast_pos.size(), 1,
|
|
std::multiplies<int>());
|
|
split_w =
|
|
std::accumulate(x_dims_array + broadcast_pos.size(),
|
|
x_dims_array + max_dim, 1, std::multiplies<int>());
|
|
|
|
} else {
|
|
split_h =
|
|
std::accumulate(y_dims_array, y_dims_array + broadcast_pos.size(), 1,
|
|
std::multiplies<int>());
|
|
split_w =
|
|
std::accumulate(y_dims_array + broadcast_pos.size(),
|
|
y_dims_array + max_dim, 1, std::multiplies<int>());
|
|
}
|
|
|
|
if (h > split_h) kh = split_h;
|
|
if (w > split_w) kw = split_w;
|
|
|
|
if (is_y) {
|
|
if (w < 16 || h < 16) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int grid_size = w;
|
|
CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
|
|
is_y);
|
|
} else {
|
|
dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
|
|
int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
|
|
FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, dy_op, dy_data, kh, kw,
|
|
is_y);
|
|
}
|
|
} else {
|
|
if (w < 16 || h < 16) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int grid_size = w;
|
|
CommonGradBroadcast1CUDAKernelHeight<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
|
|
is_y);
|
|
} else {
|
|
dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
|
|
int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
|
|
FastCommonGradBroadcastCUDAKernelHeight<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, dx_op, dx_data, kh, kw,
|
|
is_y);
|
|
}
|
|
}
|
|
};
|
|
|
|
auto FastBroadCastHeightCUDAF = [&](const std::vector<int> &broadcast_pos,
|
|
bool x_large) {
|
|
int h =
|
|
std::accumulate(out_dims_array, out_dims_array + broadcast_pos.size(),
|
|
1, std::multiplies<int>());
|
|
int w =
|
|
std::accumulate(out_dims_array + broadcast_pos.size(),
|
|
out_dims_array + max_dim, 1, std::multiplies<int>());
|
|
|
|
VLOG(3) << "FastBroadCastHeightCUDAF w:" << w << " h:" << h;
|
|
|
|
if (w < 16 || h < 16) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int grid_size = w;
|
|
ElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
|
|
dx_data, dy_data);
|
|
} else {
|
|
dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
|
|
int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
|
|
FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, h, w, x_large, dx_op, dy_op,
|
|
dx_data, dy_data);
|
|
}
|
|
};
|
|
|
|
auto FastBroadCastAllCUDAF = [&](const std::vector<int> &broadcast_pos,
|
|
int max_dim, bool is_x_large) {
|
|
int axis = broadcast_pos[0];
|
|
int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
|
|
std::multiplies<int>());
|
|
int mid = 1;
|
|
int post = 1;
|
|
|
|
if (broadcast_pos.size() == 1) {
|
|
mid = out_dims_array[axis];
|
|
post =
|
|
std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
} else {
|
|
mid = std::accumulate(out_dims_array + axis,
|
|
out_dims_array + broadcast_pos.back() + 1, 1,
|
|
std::multiplies<int>());
|
|
post =
|
|
std::accumulate(out_dims_array + broadcast_pos.back() + 1,
|
|
out_dims_array + max_dim, 1, std::multiplies<int>());
|
|
}
|
|
|
|
VLOG(3) << "FastBroadCastAllCUDAF pre:" << pre << " mid:" << mid
|
|
<< " post:" << post;
|
|
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
|
|
int grid_size = pre * post;
|
|
|
|
FastCommonGradBroadcastAllCUDAKernel<<<grid_size, block_size, 0, stream>>>(
|
|
x_data, y_data, out_data, dout_data, pre, mid, post, is_x_large, dx_op,
|
|
dy_op, dx_data, dy_data);
|
|
};
|
|
|
|
auto FastBroadCastOneCUDAF = [&](const std::vector<int> &broadcast_pos,
|
|
int max_dim, bool is_x) {
|
|
int axis = broadcast_pos[0];
|
|
int pre = std::accumulate(out_dims_array, out_dims_array + axis, 1,
|
|
std::multiplies<int>());
|
|
int mid = out_dims_array[axis];
|
|
int post =
|
|
std::accumulate(out_dims_array + axis + 1, out_dims_array + max_dim, 1,
|
|
std::multiplies<int>());
|
|
|
|
int k_pre;
|
|
int k_mid;
|
|
int k_post;
|
|
|
|
if (is_x) {
|
|
k_pre = std::accumulate(y_dims_array, y_dims_array + axis, 1,
|
|
std::multiplies<int>());
|
|
k_mid = y_dims_array[axis];
|
|
k_post = std::accumulate(y_dims_array + axis + 1, y_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
|
|
int grid_size = pre * post;
|
|
// we need to calc y offset with blockid, so do x_pre/y_pre to get left
|
|
// size.
|
|
if (k_pre != pre) k_pre = pre / k_pre;
|
|
|
|
FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
|
|
k_post, true, dx_op, dx_data);
|
|
} else {
|
|
k_pre = std::accumulate(x_dims_array, x_dims_array + axis, 1,
|
|
std::multiplies<int>());
|
|
k_mid = x_dims_array[axis];
|
|
k_post = std::accumulate(x_dims_array + axis + 1, x_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, mid);
|
|
int grid_size = pre * post;
|
|
if (k_pre != pre) k_pre = pre / k_pre;
|
|
|
|
FastCommonGradBroadcastOneCUDAKernel<<<grid_size, block_size, 0,
|
|
stream>>>(
|
|
x_data, y_data, out_data, dout_data, pre, mid, post, k_pre, k_mid,
|
|
k_post, false, dy_op, dy_data);
|
|
}
|
|
VLOG(3) << "FastBroadCastOneCUDAF pre:" << pre << " mid:" << mid
|
|
<< " post:" << post;
|
|
};
|
|
|
|
// do fast elementwise if: 1. only one input need to do broadcast, we can
|
|
// fallback
|
|
// to old fast path.
|
|
// 2. if both x and y need broadcast, then do it one by one.
|
|
bool fast_broadcast = false;
|
|
if (x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
|
|
can_split_y = SplitDims(y_broadcast_pos, max_dim);
|
|
if (can_split_y) {
|
|
// only y need to do broadcast on h
|
|
if (y_broadcast_pos[0] == 0) {
|
|
FastBroadCastHeightCUDAF(y_broadcast_pos, true);
|
|
fast_broadcast = true;
|
|
}
|
|
} else if (y_broadcast_pos.size() == 1 ||
|
|
CheckContiguousDims(y_broadcast_pos)) { // for only one dim and
|
|
// contiguous broadcast.
|
|
// If cannot split, which means input has 3 parts
|
|
FastBroadCastAllCUDAF(y_broadcast_pos, max_dim, true);
|
|
fast_broadcast = true;
|
|
}
|
|
} else if (y_broadcast_pos.empty() && !x_broadcast_pos.empty()) {
|
|
// only x need broadcast
|
|
can_split_x = SplitDims(x_broadcast_pos, max_dim);
|
|
if (can_split_x) {
|
|
if (x_broadcast_pos[0] == 0) {
|
|
FastBroadCastHeightCUDAF(x_broadcast_pos, false);
|
|
fast_broadcast = true;
|
|
}
|
|
} else if (x_broadcast_pos.size() == 1 ||
|
|
CheckContiguousDims(x_broadcast_pos)) {
|
|
FastBroadCastAllCUDAF(x_broadcast_pos, max_dim, false);
|
|
fast_broadcast = true;
|
|
}
|
|
} else if (!x_broadcast_pos.empty() && !y_broadcast_pos.empty()) {
|
|
// do x and y broadcast each.
|
|
can_split_y = SplitDims(y_broadcast_pos, max_dim);
|
|
bool fast_broadcast_x = false;
|
|
bool fast_broadcast_y = false;
|
|
if (can_split_y) {
|
|
// begin at start.
|
|
if (y_broadcast_pos[0] == 0) {
|
|
FastCommonCUDAF(y_broadcast_pos, true);
|
|
fast_broadcast_y = true;
|
|
}
|
|
} else if (y_broadcast_pos.size() == 1) {
|
|
FastBroadCastOneCUDAF(y_broadcast_pos, max_dim, false);
|
|
can_split_y = true;
|
|
fast_broadcast_y = true;
|
|
}
|
|
can_split_x = SplitDims(x_broadcast_pos, max_dim);
|
|
if (can_split_x) {
|
|
if (x_broadcast_pos[0] == 0) {
|
|
FastCommonCUDAF(x_broadcast_pos, false);
|
|
fast_broadcast_x = true;
|
|
}
|
|
} else if (x_broadcast_pos.size() == 1) {
|
|
FastBroadCastOneCUDAF(x_broadcast_pos, max_dim, true);
|
|
can_split_x = true;
|
|
fast_broadcast_x = true;
|
|
}
|
|
VLOG(3) << "CommonBroadcast can_split_y:" << can_split_y
|
|
<< " can_split_x:" << can_split_x;
|
|
// if both x and y into fast path then return
|
|
if (fast_broadcast_x && fast_broadcast_y) {
|
|
fast_broadcast = true;
|
|
}
|
|
if (can_split_y && can_split_x && fast_broadcast) return;
|
|
}
|
|
|
|
// Should remove memory copy, use reg instead.
|
|
if (fast_broadcast) {
|
|
return;
|
|
}
|
|
int x_blocks = 0;
|
|
int x_threads = 0;
|
|
ComputeBroadcastKernelSize(x_dims_array, out_dims_array, &x_blocks,
|
|
&x_threads, max_dim);
|
|
int y_blocks = 0;
|
|
int y_threads = 0;
|
|
ComputeBroadcastKernelSize(y_dims_array, out_dims_array, &y_blocks,
|
|
&y_threads, max_dim);
|
|
|
|
auto x_strides_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *x_strides_array_gpu =
|
|
reinterpret_cast<int *>(x_strides_array_tmp->ptr());
|
|
memory::Copy(gplace, x_strides_array_gpu, cplace, x_strides_array.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto y_strides_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *y_strides_array_gpu =
|
|
reinterpret_cast<int *>(y_strides_array_tmp->ptr());
|
|
memory::Copy(gplace, y_strides_array_gpu, cplace, y_strides_array.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto out_dims_array_tmp = memory::Alloc(ctx, bytes);
|
|
int *out_dims_array_gpu = reinterpret_cast<int *>(out_dims_array_tmp->ptr());
|
|
memory::Copy(gplace, out_dims_array_gpu, cplace, out_dims_array, bytes,
|
|
ctx.stream());
|
|
|
|
const int out_size = std::accumulate(out_dims_array, out_dims_array + max_dim,
|
|
1, std::multiplies<int>());
|
|
int x_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, x_threads);
|
|
int y_block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, y_threads);
|
|
if (dx) {
|
|
auto x_strides_order_tmp = memory::Alloc(ctx, bytes);
|
|
int *x_strides_order_gpu =
|
|
reinterpret_cast<int *>(x_strides_order_tmp->ptr());
|
|
memory::Copy(gplace, x_strides_order_gpu, cplace, x_strides_order.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto x_dims_order_tmp = memory::Alloc(ctx, bytes);
|
|
int *x_dims_order_gpu = reinterpret_cast<int *>(x_dims_order_tmp->ptr());
|
|
memory::Copy(gplace, x_dims_order_gpu, cplace, x_dims_order.data(), bytes,
|
|
ctx.stream());
|
|
CommonGradBroadcastCUDAKernel<
|
|
T, DX_OP><<<x_blocks, x_block_size, 0, ctx.stream()>>>(
|
|
x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
|
|
x_strides_order_gpu, x_dims_order_gpu, x_data, y_data, out_data,
|
|
dout_data, dx_data, out_size, max_dim, x_threads, dx_op);
|
|
}
|
|
if (dy) {
|
|
auto y_strides_order_tmp = memory::Alloc(ctx, bytes);
|
|
int *y_strides_order_gpu =
|
|
reinterpret_cast<int *>(y_strides_order_tmp->ptr());
|
|
memory::Copy(gplace, y_strides_order_gpu, cplace, y_strides_order.data(),
|
|
bytes, ctx.stream());
|
|
|
|
auto y_dims_order_tmp = memory::Alloc(ctx, bytes);
|
|
int *y_dims_order_gpu = reinterpret_cast<int *>(y_dims_order_tmp->ptr());
|
|
memory::Copy(gplace, y_dims_order_gpu, cplace, y_dims_order.data(), bytes,
|
|
ctx.stream());
|
|
CommonGradBroadcastCUDAKernel<
|
|
T, DY_OP><<<y_blocks, y_block_size, 0, ctx.stream()>>>(
|
|
x_strides_array_gpu, y_strides_array_gpu, out_dims_array_gpu,
|
|
y_strides_order_gpu, y_dims_order_gpu, x_data, y_data, out_data,
|
|
dout_data, dy_data, out_size, max_dim, y_threads, dy_op);
|
|
}
|
|
}
|
|
|
|
#endif // __NVCC__
|
|
|
|
inline framework::DDim trim_trailing_singular_dims(
|
|
const framework::DDim &dims) {
|
|
// Remove trailing dimensions of size 1 for y
|
|
auto actual_dims_size = dims.size();
|
|
for (; actual_dims_size != 0; --actual_dims_size) {
|
|
if (dims[actual_dims_size - 1] != 1) break;
|
|
}
|
|
if (actual_dims_size == dims.size()) return dims;
|
|
std::vector<int> trim_dims;
|
|
trim_dims.resize(actual_dims_size);
|
|
for (int i = 0; i < actual_dims_size; ++i) {
|
|
trim_dims[i] = dims[i];
|
|
}
|
|
if (trim_dims.size() == 0) {
|
|
return framework::DDim(framework::make_dim());
|
|
}
|
|
framework::DDim actual_dims = framework::make_ddim(trim_dims);
|
|
return actual_dims;
|
|
}
|
|
|
|
template <typename T, typename DeviceContext>
|
|
class RowwiseTransformIterator;
|
|
|
|
template <typename T, typename DeviceContext>
|
|
class MidWiseTransformIterator;
|
|
|
|
// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
|
|
template <typename T>
|
|
class RowwiseTransformIterator<T, platform::CPUDeviceContext>
|
|
: public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
|
|
T *, T &> {
|
|
public:
|
|
RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}
|
|
|
|
RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
|
|
++i_;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
RowwiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
|
|
while (n-- > 0) {
|
|
++i_;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
|
|
&rhs) const {
|
|
return (ptr_ + i_) == &(*rhs);
|
|
}
|
|
|
|
bool operator!=(const RowwiseTransformIterator<T, platform::CPUDeviceContext>
|
|
&rhs) const {
|
|
return (ptr_ + i_) != &(*rhs);
|
|
}
|
|
|
|
const T &operator*() { return ptr_[i_]; }
|
|
|
|
private:
|
|
const T *ptr_;
|
|
int i_;
|
|
int64_t n_;
|
|
};
|
|
|
|
template <typename T>
|
|
class MidWiseTransformIterator<T, platform::CPUDeviceContext>
|
|
: public std::iterator<std::random_access_iterator_tag, T, std::ptrdiff_t,
|
|
T *, T &> {
|
|
public:
|
|
MidWiseTransformIterator(const T *ptr, int n, int post)
|
|
: ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}
|
|
|
|
MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator++() {
|
|
++j_;
|
|
if (UNLIKELY(j_ == post_)) {
|
|
++i_;
|
|
j_ = 0;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
MidWiseTransformIterator<T, platform::CPUDeviceContext> &operator+(int n) {
|
|
while (n-- > 0) {
|
|
++j_;
|
|
if (UNLIKELY(j_ == post_)) {
|
|
++i_;
|
|
j_ = 0;
|
|
if (UNLIKELY(i_ == n_)) {
|
|
i_ = 0;
|
|
}
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
|
|
&rhs) const {
|
|
return (ptr_ + i_) == &(*rhs);
|
|
}
|
|
|
|
bool operator!=(const MidWiseTransformIterator<T, platform::CPUDeviceContext>
|
|
&rhs) const {
|
|
return (ptr_ + i_) != &(*rhs);
|
|
}
|
|
|
|
const T &operator*() { return ptr_[i_]; }
|
|
|
|
private:
|
|
const T *ptr_;
|
|
int64_t i_;
|
|
int64_t j_;
|
|
int64_t n_;
|
|
int64_t post_;
|
|
};
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T>
|
|
class RowwiseTransformIterator<T, platform::CUDADeviceContext>
|
|
: public thrust::iterator_adaptor<
|
|
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
|
|
public:
|
|
typedef thrust::iterator_adaptor<
|
|
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
|
|
super_t;
|
|
HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
|
|
: super_t(x), begin_(x), n_(n) {}
|
|
friend class thrust::iterator_core_access;
|
|
|
|
private:
|
|
unsigned int n_;
|
|
const T *begin_;
|
|
HOSTDEVICE typename super_t::reference dereference() const {
|
|
return *(begin_ + (this->base() - begin_) % n_);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MidWiseTransformIterator<T, platform::CUDADeviceContext>
|
|
: public thrust::iterator_adaptor<
|
|
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *> {
|
|
public:
|
|
typedef thrust::iterator_adaptor<
|
|
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T *>
|
|
super_t;
|
|
HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
|
|
: super_t(x), begin_(x), n_(n), post_(post) {}
|
|
friend class thrust::iterator_core_access;
|
|
|
|
private:
|
|
unsigned int post_;
|
|
unsigned int n_;
|
|
const T *begin_;
|
|
HOSTDEVICE typename super_t::reference dereference() const {
|
|
return *(begin_ + (((this->base() - begin_) / post_) % n_));
|
|
}
|
|
};
|
|
#endif
|
|
|
|
template <typename Functor, typename T, typename DeviceContext,
|
|
typename OutType = T>
|
|
class TransformFunctor {
|
|
public:
|
|
TransformFunctor(const framework::Tensor *x, const framework::Tensor *y,
|
|
framework::Tensor *z, const DeviceContext &ctx, Functor func,
|
|
const bool is_xsize_larger = true)
|
|
: x_(x->data<T>()),
|
|
y_(y->data<T>()),
|
|
z_(z->mutable_data<OutType>(ctx.GetPlace())),
|
|
nx_(x->numel()),
|
|
ctx_(ctx),
|
|
func_(func),
|
|
is_xsize_larger_(is_xsize_larger) {
|
|
if (is_xsize_larger_ == false) {
|
|
nx_ = y->numel();
|
|
}
|
|
}
|
|
|
|
inline void Run() const {
|
|
platform::Transform<DeviceContext> trans;
|
|
trans(ctx_, x_, x_ + nx_, y_, z_, func_);
|
|
}
|
|
|
|
inline void RunRowWise(int n, int pre) const {
|
|
platform::Transform<DeviceContext> trans;
|
|
if (is_xsize_larger_) {
|
|
trans(ctx_, x_, x_ + nx_,
|
|
RowwiseTransformIterator<T, DeviceContext>(y_, n), z_, func_);
|
|
} else {
|
|
trans(ctx_, y_, y_ + nx_,
|
|
RowwiseTransformIterator<T, DeviceContext>(x_, n), z_, func_);
|
|
}
|
|
}
|
|
|
|
inline void RunMidWise(int n, int pre, int post) const {
|
|
platform::Transform<DeviceContext> trans;
|
|
if (is_xsize_larger_) {
|
|
trans(ctx_, x_, x_ + nx_,
|
|
MidWiseTransformIterator<T, DeviceContext>(y_, n, post), z_, func_);
|
|
} else {
|
|
trans(ctx_, y_, y_ + nx_,
|
|
MidWiseTransformIterator<T, DeviceContext>(x_, n, post), z_, func_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const T *x_;
|
|
const T *y_;
|
|
OutType *z_;
|
|
int64_t nx_;
|
|
const DeviceContext &ctx_;
|
|
Functor func_;
|
|
bool is_xsize_larger_;
|
|
};
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
struct ElemwiseGradNoBroadcast {
|
|
const T *x_;
|
|
const T *y_;
|
|
const T *out_;
|
|
const T *dout_;
|
|
|
|
HOSTDEVICE void operator()(size_t i) {
|
|
if (dx_ != nullptr) {
|
|
dx_[i] = dx_op_(x_[i], y_[i], out_[i], dout_[i]);
|
|
}
|
|
if (dy_ != nullptr) {
|
|
dy_[i] = dy_op_(x_[i], y_[i], out_[i], dout_[i]);
|
|
}
|
|
}
|
|
|
|
DX_OP dx_op_;
|
|
DY_OP dy_op_;
|
|
T *dx_;
|
|
T *dy_;
|
|
};
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static void ElemwiseGradBroadcast1CPU(const T *x, const T *y, const T *out,
|
|
const T *dout, int h, int w,
|
|
bool is_xsize_larger, DX_OP dx_op,
|
|
DY_OP dy_op, T *dx, T *dy) {
|
|
if (is_xsize_larger) {
|
|
for (int i = 0; i < h; ++i) {
|
|
for (int j = 0; j < w; ++j) {
|
|
int x_offset = i * w + j;
|
|
if (dx != nullptr) {
|
|
dx[x_offset] =
|
|
dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
if (i == 0) {
|
|
dy[j] = tmp;
|
|
} else {
|
|
dy[j] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else { // x.dims < y.dims, broadcast for x.
|
|
for (int i = 0; i < h; ++i) {
|
|
for (int j = 0; j < w; ++j) {
|
|
int y_offset = i * w + j;
|
|
if (dy != nullptr) {
|
|
dy[y_offset] =
|
|
dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
if (dx != nullptr) {
|
|
T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
if (i == 0) {
|
|
dx[j] = tmp;
|
|
} else {
|
|
dx[j] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static void ElemwiseGradBroadcast1CUDA(cudaStream_t stream, const T *x,
|
|
const T *y, const T *out, const T *dout,
|
|
int h, int w, bool is_xsize_larger,
|
|
DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
|
|
// For small case use 1D block
|
|
constexpr int half_walf = 16;
|
|
if (w < half_walf || h < half_walf) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int gird_size = w;
|
|
ElemwiseGradBroadcast1CUDAKernel<<<gird_size, block_size, 0, stream>>>(
|
|
x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
|
|
} else {
|
|
// suppose perfoemance improves with h increased.
|
|
dim3 block_size = dim3(BLOCK_X, BLOCK_Y);
|
|
int grid_size = (w + BLOCK_X - 1) / BLOCK_X;
|
|
FastElemwiseGradBroadcast1CUDAKernel<<<grid_size, block_size, 0, stream>>>(
|
|
x, y, out, dout, h, w, is_xsize_larger, dx_op, dy_op, dx, dy);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static void ElemwiseGradBroadcast2CPU(const T *x, const T *y, const T *out,
|
|
const T *dout, int pre, int n, int post,
|
|
bool is_xsize_larger, DX_OP dx_op,
|
|
DY_OP dy_op, T *dx, T *dy) {
|
|
if (is_xsize_larger) {
|
|
for (int i = 0; i < pre; ++i) {
|
|
for (int j = 0; j < n; ++j) {
|
|
for (int k = 0; k < post; ++k) {
|
|
int x_offset = i * n * post + j * post + k;
|
|
if (dx != nullptr) {
|
|
dx[x_offset] =
|
|
dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp = dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
if (i == 0 && k == 0) {
|
|
dy[j] = tmp;
|
|
} else {
|
|
dy[j] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else { // x.dims < y.dims, broadcast for x.
|
|
for (int i = 0; i < pre; ++i) {
|
|
for (int j = 0; j < n; ++j) {
|
|
for (int k = 0; k < post; ++k) {
|
|
int y_offset = i * n * post + j * post + k;
|
|
if (dy != nullptr) {
|
|
dy[y_offset] =
|
|
dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
if (dx != nullptr) {
|
|
T tmp = dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
if (i == 0 && k == 0) {
|
|
dx[j] = tmp;
|
|
} else {
|
|
dx[j] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static __global__ void ElemwiseGradBroadcast2CUDAKernel(
|
|
const T *x, const T *y, const T *out, const T *dout, int pre, int n,
|
|
int post, bool is_xsize_larger, DX_OP dx_op, DY_OP dy_op, T *dx, T *dy) {
|
|
int tid = threadIdx.x;
|
|
int j = blockIdx.x;
|
|
|
|
T val(0);
|
|
int ttid = tid;
|
|
|
|
if (is_xsize_larger) {
|
|
while (true) {
|
|
int i = ttid / post;
|
|
int k = ttid % post;
|
|
if (i >= pre) break;
|
|
|
|
int x_offset = i * n * post + j * post + k;
|
|
|
|
if (dx != nullptr) {
|
|
dx[x_offset] = dx_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
|
|
if (dy != nullptr) {
|
|
val += dy_op(x[x_offset], y[j], out[x_offset], dout[x_offset]);
|
|
}
|
|
|
|
ttid += ELEMWISE_MAX_BLOCK_DIM;
|
|
}
|
|
|
|
if (dy) {
|
|
int h = pre * post;
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
} else { // x.dims < y.dims, broadcast for x.
|
|
while (true) {
|
|
int i = ttid / post;
|
|
int k = ttid % post;
|
|
if (i >= pre) break;
|
|
|
|
int y_offset = i * n * post + j * post + k;
|
|
|
|
if (dy != nullptr) {
|
|
dy[y_offset] = dy_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
|
|
if (dx != nullptr) {
|
|
val += dx_op(x[j], y[y_offset], out[y_offset], dout[y_offset]);
|
|
}
|
|
|
|
ttid += ELEMWISE_MAX_BLOCK_DIM;
|
|
}
|
|
|
|
if (dx) {
|
|
int h = pre * post;
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dx[j] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP>
|
|
static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
|
|
const T *y, const T *out, const T *dout,
|
|
int pre, int n, int post,
|
|
bool is_xsize_larger, DX_OP dx_op,
|
|
DY_OP dy_op, T *dx, T *dy) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
|
|
int gird_size = n;
|
|
ElemwiseGradBroadcast2CUDAKernel<<<gird_size, block_size, 0, stream>>>(
|
|
x, y, out, dout, pre, n, post, is_xsize_larger, dx_op, dy_op, dx, dy);
|
|
}
|
|
|
|
#endif
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
|
|
void CommonElementwiseBroadcastBackward(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
|
|
const framework::DDim &y_dims, const framework::Tensor &x,
|
|
const framework::Tensor &y, const framework::Tensor &out,
|
|
const framework::Tensor &dout, int axis, framework::Tensor *dx,
|
|
framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
|
|
int max_dim = std::max(x_dims.size(), y_dims.size());
|
|
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
|
|
std::vector<int> x_dims_array(max_dim);
|
|
std::vector<int> y_dims_array(max_dim);
|
|
std::vector<int> out_dims_array(max_dim);
|
|
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
|
|
y_dims_array.data(), out_dims_array.data(), max_dim,
|
|
axis);
|
|
|
|
// for inplace strategy. memset will make dx and dout clear and get wrong
|
|
// result.
|
|
if (dx && dx->IsSharedBufferWith(dout)) {
|
|
dx->clear();
|
|
dx->mutable_data<T>(x_dims, ctx.GetPlace());
|
|
}
|
|
|
|
VLOG(3) << "CommonElementwiseBroadcastBackward xdims:"
|
|
<< framework::make_ddim(x_dims_array)
|
|
<< " ydim:" << framework::make_ddim(y_dims_array);
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
CommonGradBroadcastCUDA<T, DX_OP, DY_OP>(
|
|
x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
|
|
out_dims_array.data(), max_dim,
|
|
ctx.template device_context<platform::CUDADeviceContext>(), dx_op,
|
|
dy_op);
|
|
#endif
|
|
} else {
|
|
CommonGradBroadcastCPU<T, DX_OP, DY_OP>(
|
|
x, y, out, dout, dx, dy, x_dims_array.data(), y_dims_array.data(),
|
|
out_dims_array.data(), max_dim,
|
|
ctx.template device_context<platform::CPUDeviceContext>(), dx_op,
|
|
dy_op);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
|
|
void ElemwiseGradComputeNoBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
|
|
const framework::DDim &y_dim, const framework::Tensor &x,
|
|
const framework::Tensor &y, const framework::Tensor &out,
|
|
const framework::Tensor &dout, int axis, framework::Tensor *dx,
|
|
framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
|
|
size_t N = static_cast<size_t>(framework::product(x_dim));
|
|
#if !defined(_WIN32)
|
|
platform::ForRange<DeviceContext> for_range(
|
|
ctx.template device_context<DeviceContext>(), N);
|
|
#else
|
|
platform::ForRange<DeviceContext> for_range(
|
|
ctx.device_context<DeviceContext>(), N);
|
|
#endif // !_WIN32
|
|
for_range(ElemwiseGradNoBroadcast<T, DX_OP, DY_OP>{
|
|
x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), dx_op, dy_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace())});
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
|
|
void ElemwiseGradComputeWithBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dims,
|
|
const framework::DDim &y_dims, const framework::Tensor &x,
|
|
const framework::Tensor &y, const framework::Tensor &out,
|
|
const framework::Tensor &dout, int axis, framework::Tensor *dx,
|
|
framework::Tensor *dy, DX_OP dx_op, DY_OP dy_op) {
|
|
bool is_xsize_larger = true;
|
|
|
|
int max_dim = x_dims.size();
|
|
if (x_dims.size() < y_dims.size()) {
|
|
is_xsize_larger = false;
|
|
max_dim = y_dims.size();
|
|
}
|
|
|
|
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
|
|
PADDLE_ENFORCE_GE(
|
|
axis, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis));
|
|
PADDLE_ENFORCE_LT(axis, max_dim,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be less than %d, but received axis is %d.",
|
|
max_dim, axis));
|
|
|
|
int pre, n, post, is_run_common_broadcast, axis_trim = 0;
|
|
if (is_xsize_larger) {
|
|
auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
|
|
axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
|
|
get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
} else {
|
|
auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
|
|
axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
|
|
get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
}
|
|
|
|
// special case for common backward implementation.
|
|
if (is_run_common_broadcast) {
|
|
CommonElementwiseBroadcastBackward<DeviceContext, T, DX_OP, DY_OP>(
|
|
ctx, x_dims, y_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
|
|
return;
|
|
}
|
|
if (post == 1) {
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
ElemwiseGradBroadcast1CUDA(
|
|
ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
|
|
y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, is_xsize_larger,
|
|
dx_op, dy_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
ElemwiseGradBroadcast1CPU(
|
|
x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n,
|
|
is_xsize_larger, dx_op, dy_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
} else {
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
ElemwiseGradBroadcast2CUDA(
|
|
ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
|
|
y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
|
|
is_xsize_larger, dx_op, dy_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
ElemwiseGradBroadcast2CPU(
|
|
x.data<T>(), y.data<T>(), out.data<T>(), dout.data<T>(), pre, n, post,
|
|
is_xsize_larger, dx_op, dy_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename DeviceContext, typename T,
|
|
typename OutType = T>
|
|
void CommonElementwiseBroadcastForward(
|
|
const framework::ExecutionContext &ctx, const framework::Tensor *x,
|
|
const framework::Tensor *y, framework::Tensor *z,
|
|
const framework::DDim &x_dims, const framework::DDim &y_dims, Functor func,
|
|
int axis, const bool is_xsize_larger = true) {
|
|
int max_dim = std::max(x_dims.size(), y_dims.size());
|
|
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
|
|
PADDLE_ENFORCE_GE(
|
|
axis, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis));
|
|
PADDLE_ENFORCE_LT(axis, max_dim,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be less than %d, but received axis is %d.",
|
|
max_dim, axis));
|
|
std::vector<int> x_dims_array(max_dim);
|
|
std::vector<int> y_dims_array(max_dim);
|
|
std::vector<int> out_dims_array(max_dim);
|
|
GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
|
|
y_dims_array.data(), out_dims_array.data(), max_dim,
|
|
axis);
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
CommonForwardBroadcastCUDA<Functor, T, OutType>(
|
|
x, y, z, x_dims_array.data(), y_dims_array.data(),
|
|
out_dims_array.data(), max_dim,
|
|
ctx.template device_context<platform::CUDADeviceContext>(), func,
|
|
is_xsize_larger);
|
|
#endif
|
|
} else {
|
|
CommonForwardBroadcastCPU<Functor, T, OutType>(
|
|
x, y, z, x_dims_array.data(), y_dims_array.data(),
|
|
out_dims_array.data(), max_dim,
|
|
ctx.template device_context<platform::CPUDeviceContext>(), func,
|
|
is_xsize_larger);
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
|
|
void ElemwiseGradCompute(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor &x, const framework::Tensor &y,
|
|
const framework::Tensor &out,
|
|
const framework::Tensor &dout, int axis,
|
|
framework::Tensor *dx, framework::Tensor *dy,
|
|
DX_OP dx_op, DY_OP dy_op) {
|
|
const framework::DDim &x_dim = x.dims();
|
|
const framework::DDim &y_dim = y.dims();
|
|
if (x.dims() == y.dims()) {
|
|
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
|
|
ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
|
|
} else {
|
|
ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
|
|
ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
|
|
}
|
|
}
|
|
|
|
// NOTE(dzhwinter): Only used in elementwise_add, elementwise_sub.
|
|
// explicit gradient can cut off X, Y, Out from gradient op
|
|
// In elementwise_add, elementwise_sub, we use dout as fake X, Y, Out to reuse
|
|
// elementwise code.
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP>
|
|
void ElemwiseExplicitGradCompute(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor &x,
|
|
const framework::Tensor &y,
|
|
const framework::Tensor &out,
|
|
const framework::Tensor &dout, int axis,
|
|
framework::Tensor *dx, framework::Tensor *dy,
|
|
DX_OP dx_op, DY_OP dy_op) {
|
|
const framework::DDim &x_dim = x.dims();
|
|
const framework::DDim &y_dim = y.dims();
|
|
if (x.dims() == y.dims()) {
|
|
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
|
|
ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
|
|
} else {
|
|
ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
|
|
ctx, x_dim, y_dim, dout, dout, out, dout, axis, dx, dy, dx_op, dy_op);
|
|
}
|
|
}
|
|
|
|
template <typename Functor, typename DeviceContext, typename T,
|
|
typename OutType = T>
|
|
void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor *x,
|
|
const framework::Tensor *y, int axis, Functor func,
|
|
framework::Tensor *z) {
|
|
auto x_dims = x->dims();
|
|
auto y_dims = y->dims();
|
|
bool is_xsize_larger = true;
|
|
int max_dim = x_dims.size();
|
|
if (x_dims.size() < y_dims.size()) {
|
|
is_xsize_larger = false;
|
|
max_dim = y_dims.size();
|
|
}
|
|
TransformFunctor<Functor, T, DeviceContext, OutType> functor(
|
|
x, y, z, ctx.template device_context<DeviceContext>(), func,
|
|
is_xsize_larger);
|
|
if (x_dims == y_dims) {
|
|
functor.Run();
|
|
return;
|
|
}
|
|
|
|
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
|
|
PADDLE_ENFORCE_GE(
|
|
axis, 0,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be great than or equal to 0, but received axis is %d.",
|
|
axis));
|
|
PADDLE_ENFORCE_LT(axis, max_dim,
|
|
platform::errors::InvalidArgument(
|
|
"Axis should be less than %d, but received axis is %d.",
|
|
max_dim, axis));
|
|
|
|
int pre, n, post, is_run_common_broadcast, axis_trim = 0;
|
|
if (is_xsize_larger) {
|
|
auto y_dims_trimed = trim_trailing_singular_dims(y_dims);
|
|
axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
|
|
get_mid_dims(x_dims, y_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
} else {
|
|
auto x_dims_trimed = trim_trailing_singular_dims(x_dims);
|
|
axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
|
|
get_mid_dims(y_dims, x_dims_trimed, axis_trim, &pre, &n, &post,
|
|
&is_run_common_broadcast);
|
|
}
|
|
// special case for common implementation.
|
|
// case 1: x=[2,3,1,5], y=[2,1,4,1]
|
|
// case 2: x=[2,3,4], y=[1,1,4]
|
|
if (is_run_common_broadcast == 1) {
|
|
CommonElementwiseBroadcastForward<Functor, DeviceContext, T, OutType>(
|
|
ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
|
|
return;
|
|
}
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
ComputeElementwiseCUDA<Functor, T, OutType>(
|
|
x, y, z, pre, n, post,
|
|
ctx.template device_context<platform::CUDADeviceContext>(), func,
|
|
is_xsize_larger);
|
|
#endif
|
|
return;
|
|
}
|
|
if (post == 1) {
|
|
functor.RunRowWise(n, pre);
|
|
return;
|
|
} else {
|
|
functor.RunMidWise(n, pre, post);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FusedElemwiseAndAct
|
|
// --- forward
|
|
template <typename T, typename CompoundFunctor, bool KeepIntermediateOut>
|
|
struct FusedElemwiseAndActNoBroadcast {
|
|
HOSTDEVICE void operator()(size_t i) {
|
|
T y_val = y_[i];
|
|
T x_val = x_[i];
|
|
if (KeepIntermediateOut) {
|
|
T intermeidiate_out = compound_functor_.GetIntermediateOut(x_val, y_val);
|
|
intermediate_out_[i] = intermeidiate_out;
|
|
out_[i] =
|
|
compound_functor_.GetOutUseIntermediateOut(x_val, intermeidiate_out);
|
|
} else {
|
|
out_[i] = compound_functor_.GetOut(x_val, y_val);
|
|
}
|
|
}
|
|
|
|
const T *x_;
|
|
const T *y_;
|
|
CompoundFunctor compound_functor_;
|
|
T *out_;
|
|
T *intermediate_out_;
|
|
};
|
|
|
|
// FusedElemwiseAndActBroadcast1:
|
|
// In this case, X and Y can be reshaped to a matrix.
|
|
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) and axis = -1 or 2,
|
|
// X can be reshaped to (6, 20) and Y can be reshaped to (1, 20)
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActBroadcast1CPU(const T *x, const T *y,
|
|
CompoundFunctor compound_functor,
|
|
int h, int w, T *out,
|
|
T *intermediate_out) {
|
|
for (int i = 0; i < h; ++i) {
|
|
for (int j = 0; j < w; ++j) {
|
|
int offset = i * w + j;
|
|
|
|
T y_val = BcastY ? y[j] : y[offset];
|
|
T x_val = BcastY ? x[offset] : x[j];
|
|
int64_t intermediate_out_offset;
|
|
if (KeepIntermediateOut) {
|
|
T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
// for the case of f1(f2(x, y))
|
|
intermediate_out_offset = offset;
|
|
} else if (BcastY) {
|
|
intermediate_out_offset = j;
|
|
} else {
|
|
intermediate_out_offset = offset;
|
|
}
|
|
|
|
intermediate_out[intermediate_out_offset] = intermeidiate_out;
|
|
out[offset] =
|
|
compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
|
|
} else {
|
|
out[offset] = compound_functor.GetOut(x_val, y_val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// FusedElemwiseAndActBroadcast2
|
|
// In this case, X and Y can be reshaped to a matrix.
|
|
// For example shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4) and axis = 1,
|
|
// X can be reshaped to (2, 12, 5) and Y can be reshaped to (1, 12, 1)
|
|
// pre = 2, n = 12, post = 5
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActBroadcast2CPU(const T *x, const T *y, int pre,
|
|
int n, int post,
|
|
CompoundFunctor compound_functor,
|
|
T *out, T *intermediate_out) {
|
|
for (int i = 0; i < pre; ++i) {
|
|
for (int j = 0; j < n; ++j) {
|
|
for (int k = 0; k < post; ++k) {
|
|
int offset = i * n * post + j * post + k;
|
|
|
|
T y_val = BcastY ? y[j] : y[offset];
|
|
T x_val = BcastY ? x[offset] : x[j];
|
|
int64_t intermediate_out_offset;
|
|
|
|
if (KeepIntermediateOut) {
|
|
T intermeidiate_out =
|
|
compound_functor.GetIntermediateOut(x_val, y_val);
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
// for the case of f1(f2(x, y))
|
|
intermediate_out_offset = offset;
|
|
} else if (BcastY) {
|
|
intermediate_out_offset = j;
|
|
} else {
|
|
intermediate_out_offset = offset;
|
|
}
|
|
|
|
intermediate_out[intermediate_out_offset] = intermeidiate_out;
|
|
out[offset] = compound_functor.GetOutUseIntermediateOut(
|
|
x_val, intermeidiate_out);
|
|
} else {
|
|
out[offset] = compound_functor.GetOut(x_val, y_val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
|
|
const T *x, const T *y, int h, int w, CompoundFunctor compound_functor,
|
|
T *out, T *intermediate_out) {
|
|
int j = blockIdx.x;
|
|
int i = threadIdx.x;
|
|
|
|
while (i < h) {
|
|
int offset = i * w + j;
|
|
|
|
T y_val = BcastY ? y[j] : y[offset];
|
|
T x_val = BcastY ? x[offset] : x[j];
|
|
int64_t intermediate_out_offset;
|
|
|
|
if (KeepIntermediateOut) {
|
|
T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
// for the case of f1(f2(x, y))
|
|
intermediate_out_offset = offset;
|
|
} else if (BcastY) {
|
|
intermediate_out_offset = j;
|
|
} else {
|
|
intermediate_out_offset = offset;
|
|
}
|
|
|
|
intermediate_out[intermediate_out_offset] = intermeidiate_out;
|
|
out[offset] =
|
|
compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
|
|
} else {
|
|
out[offset] = compound_functor.GetOut(x_val, y_val);
|
|
}
|
|
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActBroadcast1CUDA(cudaStream_t stream, const T *x,
|
|
const T *y,
|
|
CompoundFunctor compound_functor,
|
|
int h, int w, T *out,
|
|
T *intermediate_out) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int gird_size = w;
|
|
FusedElemwiseAndActBroadcast1CUDAKernel<
|
|
T, CompoundFunctor, BcastY, KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
|
|
x, y, h, w, compound_functor, out, intermediate_out);
|
|
}
|
|
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static __global__ void FusedElemwiseAndActBroadcast2CUDAKernel(
|
|
const T *x, const T *y, CompoundFunctor compound_functor, int pre, int n,
|
|
int post, T *out, T *intermediate_out) {
|
|
int tid = threadIdx.x;
|
|
int j = blockIdx.x;
|
|
|
|
while (true) {
|
|
int i = tid / post;
|
|
int k = tid % post;
|
|
if (i >= pre) break;
|
|
|
|
int offset = i * n * post + j * post + k;
|
|
|
|
T y_val = BcastY ? y[j] : y[offset];
|
|
T x_val = BcastY ? x[offset] : x[j];
|
|
int64_t intermediate_out_offset;
|
|
|
|
if (KeepIntermediateOut) {
|
|
T intermeidiate_out = compound_functor.GetIntermediateOut(x_val, y_val);
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
// for the case of f1(f2(x, y))
|
|
intermediate_out_offset = offset;
|
|
} else if (BcastY) {
|
|
intermediate_out_offset = j;
|
|
} else {
|
|
intermediate_out_offset = offset;
|
|
}
|
|
|
|
intermediate_out[intermediate_out_offset] = intermeidiate_out;
|
|
out[offset] =
|
|
compound_functor.GetOutUseIntermediateOut(x_val, intermeidiate_out);
|
|
} else {
|
|
out[offset] = compound_functor.GetOut(x_val, y_val);
|
|
}
|
|
|
|
tid += ELEMWISE_MAX_BLOCK_DIM;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename CompoundFunctor, bool BcastY,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActBroadcast2CUDA(cudaStream_t stream, const T *x,
|
|
const T *y, int pre, int n,
|
|
int post,
|
|
CompoundFunctor compound_functor,
|
|
T *out, T *intermediate_out) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
|
|
int gird_size = n;
|
|
|
|
FusedElemwiseAndActBroadcast2CUDAKernel<
|
|
T, CompoundFunctor, BcastY, KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
|
|
x, y, compound_functor, pre, n, post, out, intermediate_out);
|
|
}
|
|
|
|
#endif
|
|
|
|
template <typename DeviceContext, typename T, typename CompoundFunctor,
|
|
bool KeepIntermediateOut>
|
|
void FusedElemwiseAndActComputeNoBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
|
|
const framework::Tensor &x, const framework::Tensor &y,
|
|
CompoundFunctor compound_functor, framework::Tensor *out,
|
|
framework::Tensor *intermediate_out) {
|
|
size_t N = static_cast<size_t>(framework::product(x_dim));
|
|
|
|
platform::ForRange<DeviceContext> for_range(
|
|
ctx.template device_context<DeviceContext>(), N);
|
|
|
|
for_range(
|
|
FusedElemwiseAndActNoBroadcast<T, CompoundFunctor, KeepIntermediateOut>{
|
|
x.data<T>(), y.data<T>(), compound_functor,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
intermediate_out == nullptr
|
|
? nullptr
|
|
: intermediate_out->mutable_data<T>(ctx.GetPlace())});
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename CompoundFunctor,
|
|
bool BcastY, bool KeepIntermediateOut,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
void FusedElemwiseAndActComputeWithBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
|
|
const framework::DDim &y_dim_untrimed, const framework::Tensor &x,
|
|
const framework::Tensor &y, CompoundFunctor compound_functor, int axis,
|
|
framework::Tensor *out, framework::Tensor *intermediate_out) {
|
|
axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
|
|
auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
|
|
axis = (y_dim.size() == 0) ? x_dim.size() : axis;
|
|
|
|
int pre, n, post, is_run_common_broadcast;
|
|
get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
|
|
if (post == 1) {
|
|
int h = pre;
|
|
int w = n;
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
FusedElemwiseAndActBroadcast1CUDA<T, CompoundFunctor, BcastY,
|
|
KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
|
|
y.data<T>(), compound_functor, h, w,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
intermediate_out == nullptr
|
|
? nullptr
|
|
: intermediate_out->mutable_data<T>(ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
FusedElemwiseAndActBroadcast1CPU<T, CompoundFunctor, BcastY,
|
|
KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
x.data<T>(), y.data<T>(), compound_functor, h, w,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
intermediate_out == nullptr
|
|
? nullptr
|
|
: intermediate_out->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
} else {
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
FusedElemwiseAndActBroadcast2CUDA<T, CompoundFunctor, BcastY,
|
|
KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
ctx.template device_context<DeviceContext>().stream(), x.data<T>(),
|
|
y.data<T>(), pre, n, post, compound_functor,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
intermediate_out == nullptr
|
|
? nullptr
|
|
: intermediate_out->mutable_data<T>(ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
FusedElemwiseAndActBroadcast2CPU<T, CompoundFunctor, BcastY,
|
|
KeepIntermediateOut,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
x.data<T>(), y.data<T>(), pre, n, post, compound_functor,
|
|
out->mutable_data<T>(ctx.GetPlace()),
|
|
intermediate_out == nullptr
|
|
? nullptr
|
|
: intermediate_out->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// --- backward
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut>
|
|
struct FusedElemwiseAndActGradNoBroadcast {
|
|
HOSTDEVICE void operator()(size_t i) {
|
|
T zero = static_cast<T>(0);
|
|
T x_val = (x_ == nullptr) ? zero : x_[i];
|
|
T y_val = (y_ == nullptr) ? zero : y_[i];
|
|
T out_val = out_[i];
|
|
T dout_val = dout_[i];
|
|
T intermediate_out_val = UseIntermediateOut
|
|
? intermediate_out_[i]
|
|
: dx_op_.GetIntermediateOut(x_val, y_val);
|
|
if (dx_ != nullptr) {
|
|
dx_[i] = dx_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
|
|
out_val, dout_val);
|
|
}
|
|
if (dy_ != nullptr) {
|
|
dy_[i] = dy_op_.UseIntermediateOut(x_val, y_val, intermediate_out_val,
|
|
out_val, dout_val);
|
|
}
|
|
if (dintermediate_ != nullptr) {
|
|
dintermediate_[i] = dintermediate_op_.UseIntermediateOut(
|
|
x_val, intermediate_out_val, out_val, dout_val);
|
|
}
|
|
}
|
|
|
|
const T *x_;
|
|
const T *y_;
|
|
const T *intermediate_out_;
|
|
const T *out_;
|
|
const T *dout_;
|
|
DX_OP dx_op_;
|
|
DY_OP dy_op_;
|
|
DIntermediate_OP dintermediate_op_;
|
|
T *dx_;
|
|
T *dy_;
|
|
T *dintermediate_;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
|
|
typename DIntermediate_OP, bool UseIntermediateOut>
|
|
void FusedElemwiseAndActGradComputeNoBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
|
|
const framework::DDim &y_dim, const framework::Tensor *x,
|
|
const framework::Tensor *y, const framework::Tensor *intermediate_out,
|
|
const framework::Tensor *out, const framework::Tensor *dout, int axis,
|
|
framework::Tensor *dx, framework::Tensor *dy,
|
|
framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op) {
|
|
size_t N = static_cast<size_t>(framework::product(x_dim));
|
|
platform::ForRange<DeviceContext> for_range(
|
|
ctx.template device_context<DeviceContext>(), N);
|
|
const T *x_data = nullptr;
|
|
const T *y_data = nullptr;
|
|
if (x->IsInitialized()) x_data = x->data<T>();
|
|
if (y->IsInitialized()) y_data = y->data<T>();
|
|
|
|
for_range(FusedElemwiseAndActGradNoBroadcast<
|
|
T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>{
|
|
x_data, y_data, intermediate_out ? intermediate_out->data<T>() : nullptr,
|
|
out->data<T>(), dout->data<T>(), dx_op, dy_op, dintermediate_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
|
|
dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
|
|
ctx.GetPlace())});
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActGradBroadcast1CPU(
|
|
const T *x, const T *y, const T *intermediate_out, const T *out,
|
|
const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
|
|
int64_t tmp_out_idx, x_idx, y_idx;
|
|
T zero = static_cast<T>(0);
|
|
for (int i = 0; i < h; ++i) {
|
|
for (int j = 0; j < w; ++j) {
|
|
int offset = i * w + j;
|
|
|
|
tmp_out_idx = BcastY ? j : offset;
|
|
y_idx = BcastY ? j : offset;
|
|
x_idx = BcastY ? offset : j;
|
|
T x_val = (x == nullptr) ? zero : x[x_idx];
|
|
T y_val = (y == nullptr) ? zero : y[y_idx];
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
tmp_out_idx = offset;
|
|
}
|
|
|
|
if (dx != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dx_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
|
|
if (BcastY) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
if (i == 0) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
dx[x_idx] += tmp;
|
|
}
|
|
}
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dy_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
if (BcastY) {
|
|
if (i == 0) {
|
|
dy[y_idx] = tmp;
|
|
} else {
|
|
dy[y_idx] += tmp;
|
|
}
|
|
} else {
|
|
dy[y_idx] = tmp;
|
|
}
|
|
}
|
|
if (d_intermediate != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dintermediate_op.UseIntermediateOut(
|
|
x_val, intermediate_out[tmp_out_idx], out[offset],
|
|
dout[offset])
|
|
: dintermediate_op.Recompute(x_val, y_val, out[offset],
|
|
dout[i]);
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
if (i == 0) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
d_intermediate[tmp_out_idx] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActGradBroadcast2CPU(
|
|
const T *x, const T *y, const T *intermediate_out, const T *out,
|
|
const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
|
|
int64_t tmp_out_idx, x_idx, y_idx;
|
|
T zero = static_cast<T>(0);
|
|
for (int i = 0; i < pre; ++i) {
|
|
for (int j = 0; j < n; ++j) {
|
|
for (int k = 0; k < post; ++k) {
|
|
int offset = i * n * post + j * post + k;
|
|
|
|
tmp_out_idx = BcastY ? j : offset;
|
|
y_idx = BcastY ? j : offset;
|
|
x_idx = BcastY ? offset : j;
|
|
|
|
T x_val = (x == nullptr) ? zero : x[x_idx];
|
|
T y_val = (y == nullptr) ? zero : y[y_idx];
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
tmp_out_idx = offset;
|
|
}
|
|
|
|
if (dx != nullptr) {
|
|
T tmp =
|
|
UseIntermediateOut
|
|
? dx_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
|
|
if (BcastY) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
if (i == 0 && k == 0) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
dx[x_idx] += tmp;
|
|
}
|
|
}
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp =
|
|
UseIntermediateOut
|
|
? dy_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
if (BcastY) {
|
|
if (i == 0 && k == 0) {
|
|
dy[y_idx] = tmp;
|
|
} else {
|
|
dy[y_idx] += tmp;
|
|
}
|
|
} else {
|
|
dy[y_idx] = tmp;
|
|
}
|
|
}
|
|
if (d_intermediate != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dintermediate_op.UseIntermediateOut(
|
|
x_val, intermediate_out[tmp_out_idx], out[offset],
|
|
dout[offset])
|
|
: dintermediate_op.Recompute(x_val, y_val, out[offset],
|
|
dout[i]);
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
if (i == 0) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
d_intermediate[tmp_out_idx] += tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __NVCC__
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
|
|
const T *x, const T *y, const T *intermediate_out, const T *out,
|
|
const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
|
|
int j = blockIdx.x;
|
|
int i = threadIdx.x;
|
|
int tid = threadIdx.x;
|
|
T val(0), inter_val(0);
|
|
int64_t tmp_out_idx, x_idx, y_idx;
|
|
T zero = static_cast<T>(0);
|
|
|
|
do {
|
|
int offset = i * w + j;
|
|
|
|
tmp_out_idx = BcastY ? j : offset;
|
|
y_idx = BcastY ? j : offset;
|
|
x_idx = BcastY ? offset : j;
|
|
T x_val = (x == nullptr) ? zero : x[x_idx];
|
|
T y_val = (y == nullptr) ? zero : y[y_idx];
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
tmp_out_idx = offset;
|
|
}
|
|
|
|
if (dx != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dx_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
|
|
if (BcastY) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
val += tmp;
|
|
}
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dy_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
if (BcastY) {
|
|
val += tmp;
|
|
} else {
|
|
dy[y_idx] = tmp;
|
|
}
|
|
}
|
|
if (d_intermediate != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dintermediate_op.UseIntermediateOut(
|
|
y[y_idx], intermediate_out[tmp_out_idx], out[offset],
|
|
dout[offset])
|
|
: dintermediate_op.Recompute(x_val, y_val, out[offset],
|
|
dout[offset]);
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
inter_val += tmp;
|
|
}
|
|
}
|
|
|
|
i += ELEMWISE_MAX_BLOCK_DIM;
|
|
} while (i < h);
|
|
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
if (BcastY) {
|
|
if (dy) {
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
} else {
|
|
if (dx) {
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dx[j] = val;
|
|
}
|
|
}
|
|
}
|
|
if (!SameShapeOfIntermediateOutAndOut) {
|
|
if (d_intermediate) {
|
|
inter_val = paddle::platform::reduceSum(inter_val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
d_intermediate[j] = inter_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActGradBroadcast1CUDA(
|
|
cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
|
|
const T *out, const T *dout, int h, int w, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, h);
|
|
int gird_size = w;
|
|
FusedElemwiseAndActGradBroadcast1CUDAKernel<
|
|
T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
|
|
x, y, intermediate_out, out, dout, h, w, dx_op, dy_op, dintermediate_op,
|
|
dx, dy, d_intermediate);
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static __global__ void FusedElemwiseAndActGradBroadcast2CUDAKernel(
|
|
const T *x, const T *y, const T *intermediate_out, const T *out,
|
|
const T *dout, int pre, int n, int post, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op, T *dx, T *dy, T *d_intermediate) {
|
|
int tid = threadIdx.x;
|
|
int j = blockIdx.x;
|
|
|
|
T val(0), inter_val(0);
|
|
int ttid = tid;
|
|
int64_t tmp_out_idx, x_idx, y_idx;
|
|
T zero = static_cast<T>(0);
|
|
while (true) {
|
|
int i = ttid / post;
|
|
int k = ttid % post;
|
|
if (i >= pre) break;
|
|
|
|
int offset = i * n * post + j * post + k;
|
|
|
|
tmp_out_idx = BcastY ? j : offset;
|
|
y_idx = BcastY ? j : offset;
|
|
x_idx = BcastY ? offset : j;
|
|
T x_val = (x == nullptr) ? zero : x[x_idx];
|
|
T y_val = (y == nullptr) ? zero : y[y_idx];
|
|
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
tmp_out_idx = offset;
|
|
}
|
|
|
|
if (dx != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dx_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dx_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
|
|
if (BcastY) {
|
|
dx[x_idx] = tmp;
|
|
} else {
|
|
val += tmp;
|
|
}
|
|
}
|
|
if (dy != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dy_op.UseIntermediateOut(x_val, y_val,
|
|
intermediate_out[tmp_out_idx],
|
|
out[offset], dout[offset])
|
|
: dy_op.Recompute(x_val, y_val, out[offset], dout[offset]);
|
|
if (BcastY) {
|
|
val += tmp;
|
|
} else {
|
|
dy[y_idx] = tmp;
|
|
}
|
|
}
|
|
if (d_intermediate != nullptr) {
|
|
T tmp = UseIntermediateOut
|
|
? dintermediate_op.UseIntermediateOut(
|
|
y_val, intermediate_out[tmp_out_idx], out[offset],
|
|
dout[offset])
|
|
: dintermediate_op.Recompute(x_val, y_val, out[offset],
|
|
dout[offset]);
|
|
if (SameShapeOfIntermediateOutAndOut) {
|
|
d_intermediate[tmp_out_idx] = tmp;
|
|
} else {
|
|
inter_val += tmp;
|
|
}
|
|
}
|
|
ttid += ELEMWISE_MAX_BLOCK_DIM;
|
|
}
|
|
|
|
int h = pre * post;
|
|
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
|
|
if (BcastY) {
|
|
if (dy) {
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dy[j] = val;
|
|
}
|
|
}
|
|
} else {
|
|
if (dx) {
|
|
val = paddle::platform::reduceSum(val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
dx[j] = val;
|
|
}
|
|
}
|
|
}
|
|
if (!SameShapeOfIntermediateOutAndOut) {
|
|
if (d_intermediate) {
|
|
inter_val = paddle::platform::reduceSum(inter_val, tid, h);
|
|
if (threadIdx.x == 0) {
|
|
d_intermediate[j] = inter_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T, typename DX_OP, typename DY_OP, typename DIntermediate_OP,
|
|
bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
static void FusedElemwiseAndActGradBroadcast2CUDA(
|
|
cudaStream_t stream, const T *x, const T *y, const T *intermediate_out,
|
|
const T *out, const T *dout, int pre, int n, int post, DX_OP dx_op,
|
|
DY_OP dy_op, DIntermediate_OP dintermediate_op, T *dx, T *dy,
|
|
T *dintermediate) {
|
|
int block_size = std::min(ELEMWISE_MAX_BLOCK_DIM, pre * post);
|
|
int gird_size = n;
|
|
FusedElemwiseAndActGradBroadcast2CUDAKernel<
|
|
T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut><<<gird_size, block_size, 0, stream>>>(
|
|
x, y, intermediate_out, out, dout, pre, n, post, dx_op, dy_op,
|
|
dintermediate_op, dx, dy, dintermediate);
|
|
}
|
|
#endif
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
|
|
typename DIntermediate_OP, bool UseIntermediateOut, bool BcastY,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
void FusedElemwiseAndActGradComputeWithBroadcast(
|
|
const framework::ExecutionContext &ctx, const framework::DDim &x_dim,
|
|
const framework::DDim &y_dim_untrimed, const framework::Tensor *x,
|
|
const framework::Tensor *y, const framework::Tensor *intermediate_out,
|
|
const framework::Tensor *out, const framework::Tensor *dout, int axis,
|
|
framework::Tensor *dx, framework::Tensor *dy,
|
|
framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op) {
|
|
axis = (axis == -1 ? x_dim.size() - y_dim_untrimed.size() : axis);
|
|
auto y_dim = trim_trailing_singular_dims(y_dim_untrimed);
|
|
axis = (y_dim.size() == 0) ? x_dim.size() : axis;
|
|
|
|
int pre, n, post, is_run_common_broadcast;
|
|
get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post, &is_run_common_broadcast);
|
|
const T *x_data = nullptr;
|
|
const T *y_data = nullptr;
|
|
if (x->IsInitialized()) x_data = x->data<T>();
|
|
if (y->IsInitialized()) y_data = y->data<T>();
|
|
if (post == 1) {
|
|
int h = pre;
|
|
int w = n;
|
|
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
FusedElemwiseAndActGradBroadcast1CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
|
|
UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
|
|
intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
|
|
out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
|
|
dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
|
|
ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
FusedElemwiseAndActGradBroadcast1CPU<T, DX_OP, DY_OP, DIntermediate_OP,
|
|
UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
x_data, y_data,
|
|
intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
|
|
out->data<T>(), dout->data<T>(), h, w, dx_op, dy_op, dintermediate_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
|
|
dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
|
|
ctx.GetPlace()));
|
|
}
|
|
} else {
|
|
if (platform::is_gpu_place(ctx.GetPlace())) {
|
|
#ifdef __NVCC__
|
|
FusedElemwiseAndActGradBroadcast2CUDA<T, DX_OP, DY_OP, DIntermediate_OP,
|
|
UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
ctx.template device_context<DeviceContext>().stream(), x_data, y_data,
|
|
intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
|
|
out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
|
|
dintermediate_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
|
|
dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
|
|
ctx.GetPlace()));
|
|
#endif
|
|
} else {
|
|
FusedElemwiseAndActGradBroadcast2CPU<T, DX_OP, DY_OP, DIntermediate_OP,
|
|
UseIntermediateOut, BcastY,
|
|
SameShapeOfIntermediateOutAndOut>(
|
|
x_data, y_data,
|
|
intermediate_out == nullptr ? nullptr : intermediate_out->data<T>(),
|
|
out->data<T>(), dout->data<T>(), pre, n, post, dx_op, dy_op,
|
|
dintermediate_op,
|
|
dx == nullptr ? nullptr : dx->mutable_data<T>(ctx.GetPlace()),
|
|
dy == nullptr ? nullptr : dy->mutable_data<T>(ctx.GetPlace()),
|
|
dintermediate == nullptr ? nullptr : dintermediate->mutable_data<T>(
|
|
ctx.GetPlace()));
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename DX_OP, typename DY_OP,
|
|
typename DIntermediate_OP, bool UseIntermediateOut,
|
|
bool SameShapeOfIntermediateOutAndOut>
|
|
void FusedElemwiseAndActGradComputeEx(
|
|
const framework::ExecutionContext &ctx, const framework::Tensor *x,
|
|
const framework::Tensor *y, const framework::Tensor *out,
|
|
const framework::Tensor *intermediate_out, const framework::Tensor *dout,
|
|
int axis, framework::Tensor *dx, framework::Tensor *dy,
|
|
framework::Tensor *dintermediate, DX_OP dx_op, DY_OP dy_op,
|
|
DIntermediate_OP dintermediate_op) {
|
|
const framework::DDim &x_dim = x->dims();
|
|
const framework::DDim &y_dim = y->dims();
|
|
if (UseIntermediateOut) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
intermediate_out,
|
|
platform::errors::InvalidArgument("Intermediate out is null pointer."));
|
|
}
|
|
if (x_dim == y_dim) {
|
|
FusedElemwiseAndActGradComputeNoBroadcast<
|
|
DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut>(
|
|
ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
|
|
dintermediate, dx_op, dy_op, dintermediate_op);
|
|
} else { // Y is a scalar
|
|
bool bcast_y = x_dim.size() >= y_dim.size();
|
|
if (x_dim.size() == y_dim.size()) {
|
|
for (int i = 0; i < x_dim.size(); ++i) {
|
|
if (x_dim[i] < y_dim[i]) {
|
|
bcast_y = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// z = f1(x, f2(y))
|
|
// z = f1(f2(x, y))
|
|
if (bcast_y) { // Y should be broadcast.
|
|
FusedElemwiseAndActGradComputeWithBroadcast<
|
|
DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
|
|
true /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
|
|
ctx, x_dim, y_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
|
|
dintermediate, dx_op, dy_op, dintermediate_op);
|
|
} else {
|
|
FusedElemwiseAndActGradComputeWithBroadcast<
|
|
DeviceContext, T, DX_OP, DY_OP, DIntermediate_OP, UseIntermediateOut,
|
|
false /*BcastY*/, SameShapeOfIntermediateOutAndOut>(
|
|
ctx, y_dim, x_dim, x, y, intermediate_out, out, dout, axis, dx, dy,
|
|
dintermediate, dx_op, dy_op, dintermediate_op);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T, typename CompoundFunctor,
|
|
bool KeepIntermediateOut, bool SameShapeOfIntermediateOutAndOut>
|
|
void FusedElemwiseAndActComputeEx(const framework::ExecutionContext &ctx,
|
|
const framework::Tensor &x,
|
|
const framework::Tensor &y, int axis,
|
|
CompoundFunctor compound_functor,
|
|
framework::Tensor *out,
|
|
framework::Tensor *intermediate_out) {
|
|
if (KeepIntermediateOut) {
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
intermediate_out,
|
|
platform::errors::InvalidArgument(
|
|
"The save_intermediate_out is opened, intermediate "
|
|
"out is null pointer."));
|
|
}
|
|
|
|
const framework::DDim &x_dim = x.dims();
|
|
const framework::DDim &y_dim = y.dims();
|
|
if (x.dims() == y.dims()) {
|
|
FusedElemwiseAndActComputeNoBroadcast<DeviceContext, T, CompoundFunctor,
|
|
KeepIntermediateOut>(
|
|
ctx, x_dim, x, y, compound_functor, out, intermediate_out);
|
|
} else {
|
|
// Whether the shape of Y is a continuous subsequence of X,
|
|
// For more information please refer to the op's introduction.
|
|
bool bcast_y = x.numel() >= y.numel();
|
|
// z = f1(x, f2(y))
|
|
// z = f1(f2(x, y))
|
|
if (bcast_y) { // Y should be broadcast.
|
|
// In this case,
|
|
// for 'f2(y)', the shape of intermediate_out should be equal to the
|
|
// shape
|
|
// of Y.
|
|
// for 'f2(x, y)', the shape of intermediate_out should be equal to the
|
|
// shape of Out.
|
|
// the shape of Out should be equal to the shape of X.
|
|
FusedElemwiseAndActComputeWithBroadcast<
|
|
DeviceContext, T, CompoundFunctor, true /*BcastY*/,
|
|
KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
|
|
ctx, x_dim /*OutShape*/, y_dim, x, y, compound_functor, axis, out,
|
|
intermediate_out);
|
|
} else {
|
|
// In this case,
|
|
// for 'f2(y)', the shape of intermediate_out should be equal to the
|
|
// shape
|
|
// of Out.
|
|
// for 'f2(x, y)', the shape of intermediate_out should be equal to the
|
|
// shape of Out.
|
|
// the shape of Out should be equal to the shape of Y.
|
|
FusedElemwiseAndActComputeWithBroadcast<
|
|
DeviceContext, T, CompoundFunctor, false /*BcastY*/,
|
|
KeepIntermediateOut, SameShapeOfIntermediateOutAndOut>(
|
|
ctx, y_dim /*OutShape*/, x_dim, x, y, compound_functor, axis, out,
|
|
intermediate_out);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
static inline void GetDoubleGradSafeTensor(
|
|
const framework::ExecutionContext &ctx, const framework::Tensor *x,
|
|
const framework::Tensor *ddx, framework::Tensor *ddx_safe) {
|
|
if (ddx) {
|
|
*ddx_safe = *ddx;
|
|
} else {
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
*ddx_safe = ctx.AllocateTmpTensor<T, DeviceContext>(x->dims(), dev_ctx);
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
set_zero(ctx.template device_context<DeviceContext>(), ddx_safe,
|
|
static_cast<T>(0));
|
|
}
|
|
}
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|