You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.6 KiB
174 lines
6.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/fill_constant_op.h"
|
|
#include <string>
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class FillConstantOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "FillConstant");
|
|
|
|
auto& shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
|
|
if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
PADDLE_ENFORCE_GE(
|
|
shape[i], 0,
|
|
platform::errors::InvalidArgument(
|
|
"Each value of attribute 'shape' is expected to be no less "
|
|
"than 0. But recieved: shape[%u] = %d; shape = [%s].",
|
|
i, shape[i], framework::make_ddim(shape)));
|
|
}
|
|
}
|
|
|
|
if (shape.empty() && ctx->HasInput("ShapeTensor")) {
|
|
auto shape_dims = ctx->GetInputDim("ShapeTensor");
|
|
int num_ele = 1;
|
|
for (int i = 0; i < shape_dims.size(); ++i) {
|
|
num_ele *= shape_dims[i];
|
|
}
|
|
auto vec_dims = std::vector<int>(num_ele, -1);
|
|
ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));
|
|
|
|
return;
|
|
}
|
|
ctx->SetOutputDim("Out", framework::make_ddim(shape));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const framework::Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const override {
|
|
if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
|
|
return expected_kernel_type;
|
|
} else {
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::proto::VarType::Type(ctx.Attr<int>("dtype")),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class FillConstantOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext* ctx) const override {
|
|
auto data_type = static_cast<framework::proto::VarType::Type>(
|
|
BOOST_GET_CONST(int, ctx->GetAttr("dtype")));
|
|
ctx->SetOutputDataType("Out", data_type);
|
|
}
|
|
};
|
|
|
|
class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddAttr<int>("dtype",
|
|
"(int, default 5 (FP32)) "
|
|
"Output data type")
|
|
.SetDefault(framework::proto::VarType::FP32);
|
|
AddAttr<std::vector<int64_t>>("shape",
|
|
"(vector<int64_t>) The shape of the output")
|
|
.SetDefault({});
|
|
AddInput("ValueTensor",
|
|
"(Tensor, optional) If provided, fill_constant Op will use this "
|
|
"as value to set the output Tensor, this has a higher priority "
|
|
"than attr(str_value), the shape of this tensor MUST BE [1].")
|
|
.AsDispensable();
|
|
AddInput("ShapeTensor",
|
|
"(Tensor<int>), optional). The shape of the output."
|
|
"It has a higher priority than Attr(shape).")
|
|
.AsDispensable();
|
|
AddInput("ShapeTensorList",
|
|
"(vector<Tensor<int>>, optional). The shape of the output. "
|
|
"It has a higher priority than Attr(shape)."
|
|
"The shape of the element in vector must be [1].")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddAttr<float>("value", "(float, default 0.0f) The value to be filled")
|
|
.SetDefault(0.0f);
|
|
AddAttr<std::string>(
|
|
"str_value",
|
|
"(string, default empty) The str convert to value to be filled")
|
|
.SetDefault("");
|
|
AddAttr<bool>("force_cpu",
|
|
"(bool, default false) Force fill output variable to cpu "
|
|
"memory. Otherwise, fill output variable to the running "
|
|
"device")
|
|
.SetDefault(false);
|
|
AddAttr<int>("place_type",
|
|
"(int, default -1) allow mamually setting place where the "
|
|
"variable should be hold. "
|
|
"-1: not set manually, determine the place by executor. "
|
|
"0: CPUPlace. "
|
|
"1: CUDAPlace. "
|
|
"2: CUDAPinnedPlace. "
|
|
"3: XPUPlace. ")
|
|
.SetDefault(-1);
|
|
AddOutput("Out",
|
|
"(Tensor) Tensor of specified shape will be filled "
|
|
"with the specified value");
|
|
AddComment(R"DOC(
|
|
FillConstantBatchSizeLike Operator.
|
|
|
|
Fill up a variable with specified constant value.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(
|
|
fill_constant, ops::FillConstantOp, ops::FillConstantOpMaker,
|
|
ops::FillConstantOpVarTypeInference,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(fill_constant, ops::FillConstantKernel<float>,
|
|
ops::FillConstantKernel<double>,
|
|
ops::FillConstantKernel<int64_t>,
|
|
ops::FillConstantKernel<int>,
|
|
ops::FillConstantKernel<bool>,
|
|
ops::FillConstantKernel<paddle::platform::float16>,
|
|
ops::FillConstantKernel<paddle::platform::complex64>,
|
|
ops::FillConstantKernel<paddle::platform::complex128>);
|
|
|
|
REGISTER_OP_VERSION(fill_constant)
|
|
.AddCheckpoint(
|
|
R"ROC(
|
|
Upgrade fill_constant, add a new input [ValueTensor].
|
|
)ROC",
|
|
paddle::framework::compatible::OpVersionDesc().NewInput(
|
|
"ValueTensor",
|
|
"In order to support new feature tensor support of Value"))
|
|
.AddCheckpoint(
|
|
R"ROC(
|
|
Upgrade fill_constant to add a new attribute [place_type].
|
|
)ROC",
|
|
paddle::framework::compatible::OpVersionDesc().NewAttr(
|
|
"place_type",
|
|
"In order to support tensor in CUDAPinnedPlace and XPUPlace", -1));
|