You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/jit/kernel_base.h

358 lines
9.5 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <cstdint>
#include "paddle/fluid/operators/jit/macro.h"
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace jit {
typedef enum {
kNone = 0,
// sort by alphabet
kCRFDecoding = 1,
kEmbSeqPool = 2,
kGRUH1,
kGRUHtPart1,
kGRUHtPart2,
kHSum, // horizontal max
kHMax, // horizontal sum
kLSTMCtHt,
kLSTMC1H1,
kLayerNorm,
kMatMul,
kNCHW16CMulNC,
kSeqPool,
kSoftmax,
kStrideASum,
kStrideScal,
kVAdd,
kVAddBias,
kVAddRelu,
kVBroadcast,
kVCopy,
kVExp,
kVIdentity,
kVMul,
kVRelu,
kVScal,
kSgd,
kVSigmoid,
kVSquare,
kVSub,
kVTanh,
} KernelType;
typedef enum {
kNonePoolType = 0,
kSum = 1,
kAvg,
kSqrt,
} SeqPoolType;
// x, y, z, n
template <typename T>
struct XYZNTuple {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int);
};
// a, x, y, n
template <typename T>
struct AXYNTuple : public XYZNTuple<T> {};
// a, x, y, n, stride
template <typename T>
struct AXYNSTuple {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int, int);
};
// x, y, n
template <typename T>
struct XYNTuple {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, T*, int);
};
// x, returned value, n
template <typename T>
struct XRNTuple : public XYNTuple<T> {};
// x, returned value, n, stride
template <typename T>
struct XRNSTuple {
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, T*, int, int);
};
#define DECLARE_KERNELTUPLE(kernel_tuple, type) \
template <typename T> \
struct type##Tuple : public kernel_tuple<T> { \
static constexpr KernelType kernel_type = k##type; \
}
// Tuple should be corresponding to the KernelType
DECLARE_KERNELTUPLE(XYZNTuple, VMul);
DECLARE_KERNELTUPLE(XYZNTuple, VAdd);
DECLARE_KERNELTUPLE(XYZNTuple, VAddRelu);
DECLARE_KERNELTUPLE(XYZNTuple, VSub);
DECLARE_KERNELTUPLE(AXYNTuple, VScal);
DECLARE_KERNELTUPLE(AXYNTuple, VAddBias);
DECLARE_KERNELTUPLE(AXYNSTuple, StrideScal);
DECLARE_KERNELTUPLE(XYNTuple, VRelu);
DECLARE_KERNELTUPLE(XYNTuple, VIdentity);
DECLARE_KERNELTUPLE(XYNTuple, VSquare);
DECLARE_KERNELTUPLE(XYNTuple, VExp);
DECLARE_KERNELTUPLE(XYNTuple, VSigmoid);
DECLARE_KERNELTUPLE(XYNTuple, VTanh);
DECLARE_KERNELTUPLE(XYNTuple, VCopy);
DECLARE_KERNELTUPLE(XRNTuple, HMax);
DECLARE_KERNELTUPLE(XRNTuple, HSum);
DECLARE_KERNELTUPLE(XRNSTuple, StrideASum);
typedef struct {
void* gates; // gates: x_ch, x_ih, x_fh, x_oh
const void* ct_1;
void* ct;
void* ht;
/* weight_peephole and checked data are only used in peephole*/
const void* wp{nullptr}; // W_ic, W_fc, W_oc
void* checked{nullptr}; // size: 2 * d
} lstm_t;
typedef struct {
void* gates; // gates: {x_update, x_reset; x_state}
const void* ht_1;
void* ht;
} gru_t;
struct rnn_attr_s {
int d;
KernelType act_gate, act_cand;
rnn_attr_s() = default;
explicit rnn_attr_s(int _d, KernelType _act_gate, KernelType _act_cand)
: d(_d), act_gate(_act_gate), act_cand(_act_cand) {}
};
struct lstm_attr_s : public rnn_attr_s {
bool use_peephole;
KernelType act_cell;
lstm_attr_s() = default;
explicit lstm_attr_s(int _d, KernelType _act_gate, KernelType _act_cand,
KernelType _act_cell, bool _use_peephole = false)
: rnn_attr_s(_d, _act_gate, _act_cand),
use_peephole(_use_peephole),
act_cell(_act_cell) {}
};
typedef struct rnn_attr_s gru_attr_t;
typedef struct lstm_attr_s lstm_attr_t;
template <typename T>
struct LSTMTuple {
typedef T data_type;
typedef lstm_attr_t attr_type;
typedef void (*func_type)(lstm_t*, const lstm_attr_t*);
};
template <typename T>
struct GRUTuple {
typedef T data_type;
typedef gru_attr_t attr_type;
typedef void (*func_type)(gru_t*, const gru_attr_t*);
};
DECLARE_KERNELTUPLE(LSTMTuple, LSTMCtHt);
DECLARE_KERNELTUPLE(LSTMTuple, LSTMC1H1);
DECLARE_KERNELTUPLE(GRUTuple, GRUH1);
DECLARE_KERNELTUPLE(GRUTuple, GRUHtPart1);
DECLARE_KERNELTUPLE(GRUTuple, GRUHtPart2);
#undef DECLARE_KERNELTUPLE
template <typename T>
struct VBroadcastTuple {
static constexpr KernelType kernel_type = kVBroadcast;
typedef T data_type;
typedef int64_t attr_type;
typedef void (*func_type)(const T*, T*, int64_t, int64_t);
};
typedef struct seq_pool_attr_s {
int h, w; // h should always be the first one
SeqPoolType type;
seq_pool_attr_s() = default;
explicit seq_pool_attr_s(int width, SeqPoolType pool_type, int height = 1)
: h(height), w(width), type(pool_type) {}
} seq_pool_attr_t;
template <typename T>
struct SeqPoolTuple {
static constexpr KernelType kernel_type = kSeqPool;
typedef T data_type;
typedef seq_pool_attr_t attr_type;
typedef void (*func_type)(const T*, T*, const seq_pool_attr_t*);
};
typedef struct emb_seq_pool_attr_s {
int64_t table_height, table_width;
int64_t index_height, index_width;
int64_t out_width;
SeqPoolType pool_type;
emb_seq_pool_attr_s() = default;
explicit emb_seq_pool_attr_s(int64_t tbl_height, int64_t tbl_width,
int64_t idx_height, int64_t idx_width,
int64_t output_width,
SeqPoolType seqpool_type = SeqPoolType::kSum)
: table_height(tbl_height),
table_width(tbl_width),
index_height(idx_height),
index_width(idx_width),
out_width(output_width),
pool_type(seqpool_type) {}
} emb_seq_pool_attr_t;
template <typename T>
struct EmbSeqPoolTuple {
static constexpr KernelType kernel_type = kEmbSeqPool;
typedef T data_type;
typedef emb_seq_pool_attr_t attr_type;
typedef void (*func_type)(const T*, const int64_t*, T*,
const emb_seq_pool_attr_t*);
};
typedef struct sgd_attr_s {
int64_t param_height, param_width;
int64_t grad_height, grad_width;
int64_t selected_rows_size;
sgd_attr_s() = default;
explicit sgd_attr_s(int64_t param_h, int64_t param_w, int64_t grad_h,
int64_t grad_w, int64_t selected_rows_sz)
: param_height(param_h),
param_width(param_w),
grad_height(grad_h),
grad_width(grad_w),
selected_rows_size(selected_rows_sz) {}
} sgd_attr_t;
template <typename T>
struct SgdTuple {
static constexpr KernelType kernel_type = kSgd;
typedef T data_type;
typedef sgd_attr_t attr_type;
typedef void (*func_type)(const T*, const T*, const T*, const int64_t*, T*,
const sgd_attr_t*);
};
typedef struct matmul_attr_s {
int m, n, k;
void* packed_weight{nullptr};
matmul_attr_s() = default;
explicit matmul_attr_s(int m_, int n_, int k_, void* packed_weight_ = nullptr)
: m(m_), n(n_), k(k_), packed_weight(packed_weight_) {}
} matmul_attr_t;
template <typename T>
struct MatMulTuple {
static constexpr KernelType kernel_type = kMatMul;
typedef T data_type;
typedef matmul_attr_t attr_type;
typedef void (*func_type)(const T*, const T*, T*, const matmul_attr_t*);
};
template <typename T>
struct CRFDecodingTuple {
static constexpr KernelType kernel_type = kCRFDecoding;
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const int, const T*, const T*, T*, int*, int);
};
template <typename T>
struct LayerNormTuple {
static constexpr KernelType kernel_type = kLayerNorm;
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(T*, T*, T*, T*, const T*, const T*, int,
const float, int);
};
template <typename T>
struct SoftmaxTuple {
static constexpr KernelType kernel_type = kSoftmax;
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, T*, int, int, int);
};
// nChw16c = nChw16c .* NC
template <typename T>
struct NCHW16CMulNCTuple {
static constexpr KernelType kernel_type = kNCHW16CMulNC;
typedef T data_type;
typedef int attr_type;
typedef void (*func_type)(const T*, const T*, T*, int, int);
};
// Just for adding to kernel pool without template
class Kernel {
public:
Kernel() = default;
virtual ~Kernel() = default;
virtual const char* ImplType() const = 0;
DISABLE_COPY_AND_ASSIGN(Kernel);
};
template <typename KernelTuple>
class KernelMore : public Kernel {
public:
using T = typename KernelTuple::data_type;
using Func = typename KernelTuple::func_type;
using Attr = typename KernelTuple::attr_type;
virtual Func GetFunc() const { return func; }
// specify this kernel can be used, means it should not fail if use it.
virtual bool CanBeUsed(const Attr& attr) const = 0;
protected:
Func func{nullptr};
};
template <typename KernelTuple>
class ReferKernel : public KernelMore<KernelTuple> {
public:
// Refer code can always be used
bool CanBeUsed(const typename KernelTuple::attr_type& attr) const override {
return true;
}
const char* ImplType() const override { return "Refer"; }
};
} // namespace jit
} // namespace operators
} // namespace paddle