You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
219 lines
9.5 KiB
219 lines
9.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <paddle/fluid/platform/device_context.h>
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/detail/gru_gpu_kernel.h"
|
|
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
|
|
#include "paddle/fluid/operators/math/gru_compute.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
namespace math {
|
|
|
|
template <typename T>
|
|
struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
|
|
static void compute(const platform::CUDADeviceContext &context,
|
|
GRUMetaValue<T> value, int frame_size, int batch_size,
|
|
const detail::ActivationType active_node,
|
|
const detail::ActivationType active_gate,
|
|
bool origin_mode) {
|
|
auto stream = context.stream();
|
|
dim3 threads;
|
|
dim3 grid;
|
|
if (batch_size == 1) {
|
|
if (context.GetComputeCapability() >= 70) {
|
|
if (frame_size < 16) {
|
|
constexpr int tiled_size = 8;
|
|
int frame_blocks = (frame_size * 2 + tiled_size - 1) / tiled_size;
|
|
threads = dim3(tiled_size, 1);
|
|
grid = dim3(frame_blocks, 1);
|
|
detail::KeFastCollectiveGruGate<
|
|
T, tiled_size><<<grid, threads, 0, stream>>>(
|
|
value.gate_value, value.prev_out_value, value.gate_weight,
|
|
value.reset_output_value, frame_size, active_gate);
|
|
|
|
frame_blocks = (frame_size + tiled_size - 1) / tiled_size;
|
|
grid = dim3(frame_blocks, 1);
|
|
detail::KeFastCollectiveGruOut<
|
|
T, tiled_size><<<grid, threads, 0, stream>>>(
|
|
value.state_weight, value.prev_out_value, value.output_value,
|
|
value.gate_value, value.reset_output_value, frame_size,
|
|
active_node, origin_mode);
|
|
} else {
|
|
constexpr int tiled_size = 16;
|
|
int frame_blocks = (frame_size * 2 + tiled_size - 1) / tiled_size;
|
|
threads = dim3(tiled_size, 1);
|
|
grid = dim3(frame_blocks, 1);
|
|
detail::KeFastCollectiveGruGate<
|
|
T, tiled_size><<<grid, threads, 0, stream>>>(
|
|
value.gate_value, value.prev_out_value, value.gate_weight,
|
|
value.reset_output_value, frame_size, active_gate);
|
|
|
|
frame_blocks = (frame_size + tiled_size - 1) / tiled_size;
|
|
grid = dim3(frame_blocks, 1);
|
|
detail::KeFastCollectiveGruOut<
|
|
T, tiled_size><<<grid, threads, 0, stream>>>(
|
|
value.state_weight, value.prev_out_value, value.output_value,
|
|
value.gate_value, value.reset_output_value, frame_size,
|
|
active_node, origin_mode);
|
|
}
|
|
return;
|
|
} else {
|
|
int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
|
|
int frame_blocks = (frame_size + 1024 - 1) / 1024;
|
|
threads = dim3(frame_per_block, 1);
|
|
grid = dim3(frame_blocks, 1);
|
|
}
|
|
} else {
|
|
threads = dim3(32, 32);
|
|
grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
|
|
}
|
|
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
|
|
if (value.prev_out_value) {
|
|
blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
|
|
value.prev_out_value, frame_size, value.gate_weight,
|
|
frame_size * 2, 1, value.gate_value, frame_size * 3);
|
|
}
|
|
|
|
if (batch_size == 1) {
|
|
detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
|
|
/* is_batch= */ false,
|
|
T><<<grid, threads, 0, stream>>>(
|
|
detail::forward::gru_resetOutput<T>(), value.gate_value,
|
|
value.reset_output_value, value.prev_out_value, frame_size,
|
|
batch_size, active_gate);
|
|
} else {
|
|
detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
|
|
/* is_batch= */ true,
|
|
T><<<grid, threads, 0, stream>>>(
|
|
detail::forward::gru_resetOutput<T>(), value.gate_value,
|
|
value.reset_output_value, value.prev_out_value, frame_size,
|
|
batch_size, active_gate);
|
|
}
|
|
|
|
if (value.prev_out_value) {
|
|
blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
|
|
value.reset_output_value, frame_size, value.state_weight,
|
|
frame_size, 1, value.gate_value + frame_size * 2,
|
|
frame_size * 3);
|
|
}
|
|
|
|
if (batch_size == 1) {
|
|
detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
|
|
/* is_batch= */ false,
|
|
T><<<grid, threads, 0, stream>>>(
|
|
detail::forward::gru_finalOutput<T>(), value.gate_value,
|
|
value.prev_out_value, value.output_value, frame_size, batch_size,
|
|
active_node, origin_mode);
|
|
} else {
|
|
detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
|
|
/* is_batch= */ true,
|
|
T><<<grid, threads, 0, stream>>>(
|
|
detail::forward::gru_finalOutput<T>(), value.gate_value,
|
|
value.prev_out_value, value.output_value, frame_size, batch_size,
|
|
active_node, origin_mode);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
|
|
static void compute(const platform::CUDADeviceContext &context,
|
|
GRUMetaValue<T> value, GRUMetaGrad<T> grad,
|
|
int frame_size, int batch_size,
|
|
const detail::ActivationType active_node,
|
|
const detail::ActivationType active_gate,
|
|
bool origin_mode) {
|
|
auto stream = context.stream();
|
|
dim3 threads;
|
|
dim3 grid;
|
|
if (batch_size == 1) {
|
|
int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
|
|
int frame_blocks = (frame_size + 1024 - 1) / 1024;
|
|
threads = dim3(frame_per_block, 1);
|
|
grid = dim3(frame_blocks, 1);
|
|
} else {
|
|
threads = dim3(32, 32);
|
|
grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
|
|
}
|
|
|
|
if (batch_size == 1) {
|
|
detail::KeGruBackwardStateGrad<
|
|
detail::backward::gru_stateGrad<T>,
|
|
/* is_batch= */ false><<<grid, threads, 0, stream>>>(
|
|
detail::backward::gru_stateGrad<T>(), value.gate_value,
|
|
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
|
|
grad.output_grad, frame_size, batch_size, active_node, origin_mode);
|
|
} else {
|
|
detail::KeGruBackwardStateGrad<
|
|
detail::backward::gru_stateGrad<T>,
|
|
/* is_batch= */ true><<<grid, threads, 0, stream>>>(
|
|
detail::backward::gru_stateGrad<T>(), value.gate_value,
|
|
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
|
|
grad.output_grad, frame_size, batch_size, active_node, origin_mode);
|
|
}
|
|
|
|
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
|
|
|
|
if (value.prev_out_value && grad.prev_out_grad) {
|
|
blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
|
|
grad.gate_grad + frame_size * 2, frame_size * 3,
|
|
value.state_weight, frame_size, 0, grad.reset_output_grad,
|
|
frame_size);
|
|
|
|
if (grad.state_weight_grad) {
|
|
blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
|
|
value.reset_output_value, frame_size,
|
|
grad.gate_grad + frame_size * 2, frame_size * 3, 1,
|
|
grad.state_weight_grad, frame_size);
|
|
}
|
|
}
|
|
|
|
if (batch_size == 1) {
|
|
detail::KeGruBackwardResetGrad<
|
|
detail::backward::gru_resetGrad<T>,
|
|
/* is_batch= */ false><<<grid, threads, 0, stream>>>(
|
|
detail::backward::gru_resetGrad<T>(), value.gate_value,
|
|
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
|
|
grad.reset_output_grad, frame_size, batch_size, active_gate);
|
|
} else {
|
|
detail::KeGruBackwardResetGrad<
|
|
detail::backward::gru_resetGrad<T>,
|
|
/* is_batch= */ true><<<grid, threads, 0, stream>>>(
|
|
detail::backward::gru_resetGrad<T>(), value.gate_value,
|
|
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
|
|
grad.reset_output_grad, frame_size, batch_size, active_gate);
|
|
}
|
|
|
|
if (grad.prev_out_grad && value.prev_out_value) {
|
|
blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
|
|
grad.gate_grad, frame_size * 3, value.gate_weight,
|
|
frame_size * 2, 1, grad.prev_out_grad, frame_size);
|
|
|
|
if (grad.gate_weight_grad) {
|
|
blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
|
|
value.prev_out_value, frame_size, grad.gate_grad,
|
|
frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template struct GRUUnitFunctor<platform::CUDADeviceContext, float>;
|
|
template struct GRUUnitFunctor<platform::CUDADeviceContext, double>;
|
|
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, float>;
|
|
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, double>;
|
|
|
|
} // namespace math
|
|
} // namespace operators
|
|
} // namespace paddle
|