You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.4 KiB
158 lines
5.4 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/meshgrid_op.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class MeshgridOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_GE(
|
|
ctx->Inputs("X").size(), 1UL,
|
|
platform::errors::InvalidArgument("Input(X) should not be empty."));
|
|
PADDLE_ENFORCE_GE(
|
|
ctx->Outputs("Out").size(), 1UL,
|
|
platform::errors::InvalidArgument("Output(Out) should not be empty."));
|
|
|
|
auto inputs_dims = ctx->GetInputsDim("X");
|
|
const size_t inputs_num = inputs_dims.size();
|
|
auto outs_names = ctx->Outputs("Out");
|
|
const size_t outputs_num = outs_names.size();
|
|
|
|
auto out_shape = std::vector<int>(inputs_num);
|
|
|
|
for (size_t i = 0; i < inputs_num; i++) {
|
|
out_shape[i] = inputs_dims[i][0];
|
|
}
|
|
auto out_dims = framework::make_ddim(std::vector<int>(out_shape));
|
|
std::vector<framework::DDim> outs_dims(outputs_num, out_dims);
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto inputs = ctx.MultiInput<Tensor>("X");
|
|
auto input_data_type = framework::proto::VarType::Type(0);
|
|
bool flag = 0;
|
|
for (auto* input : inputs) {
|
|
if (input->IsInitialized() && input->numel() > 0) {
|
|
input_data_type = input->type();
|
|
flag = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (flag == 0) {
|
|
PADDLE_THROW(platform::errors::InvalidArgument(
|
|
"All Inputs of Meshgrid OP are Empty!"));
|
|
}
|
|
|
|
return framework::OpKernelType(input_data_type, ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class MeshgridOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor, default Tensor<float>).").AsDuplicable();
|
|
AddOutput("Out", "(Tensor, default Tensor<float>.)").AsDuplicable();
|
|
|
|
AddComment(R"DOC(
|
|
Meshgrid Operator.
|
|
Take: N tensors, each of which can be either scalr or 1-dimensional vector, and create
|
|
N-dimensional grids.
|
|
|
|
Args:
|
|
tensors (list of tensor): if the input k tensors has (N1,), (N2,),..., (Nk,), then
|
|
the output tensors are all of size (N1, N2, ...., Nk).
|
|
|
|
Example::
|
|
>>> x = fluid.data(name='x', shape=[10], dtype='float64')
|
|
>>> y = fluid.data(name='y', shape=[20], dtype='float64')
|
|
>>> grid_x, grid_y = fluid.layers.meshgrid([x, y])
|
|
>>> grid_x.shape
|
|
(10,20)
|
|
>>> grid_y.shape
|
|
(10,20)
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MeshgridGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Out")).size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"Number of Inputs(Out@Grad) must be larger than 1"));
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class MeshgridGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("meshgrid_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(meshgrid, ops::MeshgridOp, ops::MeshgridOpMaker,
|
|
ops::MeshgridGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::MeshgridGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(meshgrid_grad, ops::MeshgridGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
meshgrid, ops::MeshgridKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
meshgrid_grad,
|
|
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, double>);
|