You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/meshgrid_op.cc

158 lines
5.4 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/meshgrid_op.h"
#include <memory>
#include <string>
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class MeshgridOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GE(
ctx->Inputs("X").size(), 1UL,
platform::errors::InvalidArgument("Input(X) should not be empty."));
PADDLE_ENFORCE_GE(
ctx->Outputs("Out").size(), 1UL,
platform::errors::InvalidArgument("Output(Out) should not be empty."));
auto inputs_dims = ctx->GetInputsDim("X");
const size_t inputs_num = inputs_dims.size();
auto outs_names = ctx->Outputs("Out");
const size_t outputs_num = outs_names.size();
auto out_shape = std::vector<int>(inputs_num);
for (size_t i = 0; i < inputs_num; i++) {
out_shape[i] = inputs_dims[i][0];
}
auto out_dims = framework::make_ddim(std::vector<int>(out_shape));
std::vector<framework::DDim> outs_dims(outputs_num, out_dims);
ctx->SetOutputsDim("Out", outs_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto inputs = ctx.MultiInput<Tensor>("X");
auto input_data_type = framework::proto::VarType::Type(0);
bool flag = 0;
for (auto* input : inputs) {
if (input->IsInitialized() && input->numel() > 0) {
input_data_type = input->type();
flag = 1;
break;
}
}
if (flag == 0) {
PADDLE_THROW(platform::errors::InvalidArgument(
"All Inputs of Meshgrid OP are Empty!"));
}
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
class MeshgridOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor, default Tensor<float>).").AsDuplicable();
AddOutput("Out", "(Tensor, default Tensor<float>.)").AsDuplicable();
AddComment(R"DOC(
Meshgrid Operator.
Take: N tensors, each of which can be either scalr or 1-dimensional vector, and create
N-dimensional grids.
Args:
tensors (list of tensor): if the input k tensors has (N1,), (N2,),..., (Nk,), then
the output tensors are all of size (N1, N2, ...., Nk).
Example::
>>> x = fluid.data(name='x', shape=[10], dtype='float64')
>>> y = fluid.data(name='y', shape=[20], dtype='float64')
>>> grid_x, grid_y = fluid.layers.meshgrid([x, y])
>>> grid_x.shape
(10,20)
>>> grid_y.shape
(10,20)
)DOC");
}
};
class MeshgridGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Out")).size(), 1,
platform::errors::InvalidArgument(
"Number of Inputs(Out@Grad) must be larger than 1"));
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
template <typename T>
class MeshgridGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("meshgrid_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X", false));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(meshgrid, ops::MeshgridOp, ops::MeshgridOpMaker,
ops::MeshgridGradOpMaker<paddle::framework::OpDesc>,
ops::MeshgridGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(meshgrid_grad, ops::MeshgridGradOp);
REGISTER_OP_CPU_KERNEL(
meshgrid, ops::MeshgridKernel<paddle::platform::CPUDeviceContext, float>,
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, double>,
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int>,
ops::MeshgridKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
meshgrid_grad,
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::MeshgridGradKernel<paddle::platform::CPUDeviceContext, double>);