You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
5.9 KiB
160 lines
5.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/fluid/framework/data_layout_transform.h"
|
|
#include "paddle/fluid/framework/tensor.h"
|
|
#include "paddle/fluid/operators/requantize_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using dnnl::memory;
|
|
using dnnl::reorder;
|
|
using platform::to_void_cast;
|
|
using Tensor = framework::Tensor;
|
|
|
|
namespace {
|
|
|
|
inline uint8_t clip_to_uint8(float x) {
|
|
return std::max(0L, std::min(255L, std::lround(x)));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
class ReQuantOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("Input");
|
|
auto scale_in = ctx.Attr<float>("Scale_in");
|
|
auto shift_in = ctx.Attr<float>("Shift_in");
|
|
auto scale_out = ctx.Attr<float>("Scale_out");
|
|
auto shift_out = ctx.Attr<float>("Shift_out");
|
|
bool with_shift = shift_in != 0.0f || shift_out != 0.0f;
|
|
auto* output = ctx.Output<Tensor>("Output");
|
|
|
|
PADDLE_ENFORCE_NE(scale_in, 0.0f, platform::errors::InvalidArgument(
|
|
"Scale of input cannot be 0.0"));
|
|
PADDLE_ENFORCE_NE(scale_out, 0.0f, platform::errors::InvalidArgument(
|
|
"Scale of output cannot be 0.0"));
|
|
if (shift_in != 0.0f) {
|
|
PADDLE_ENFORCE_EQ(
|
|
input->type(), framework::proto::VarType::UINT8,
|
|
platform::errors::Unimplemented("Requantize does not support nonzero "
|
|
"shift for signed input."));
|
|
}
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& engine = dev_ctx.GetEngine();
|
|
|
|
auto src_tz = paddle::framework::vectorize(input->dims());
|
|
|
|
float reorder_scale = scale_out / scale_in;
|
|
|
|
std::string key = platform::CreateKey(dev_ctx, src_tz, scale_in, scale_out,
|
|
ctx.OutputName("Output"));
|
|
key = platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, key);
|
|
const std::string key_prim = key + "@r";
|
|
const std::string key_src_mem = key + "@s";
|
|
const std::string key_dst_mem = key + "@d";
|
|
|
|
std::shared_ptr<dnnl::memory> src_memory;
|
|
std::shared_ptr<dnnl::memory> dst_memory;
|
|
std::shared_ptr<reorder> reorder_p;
|
|
reorder_p = std::static_pointer_cast<reorder>(dev_ctx.GetBlob(key_prim));
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
if (reorder_p == nullptr) {
|
|
auto dst_tz = framework::vectorize(output->dims());
|
|
auto src_dt = framework::ToMKLDNNDataType(input->type());
|
|
auto dst_dt = with_shift ? framework::MKLDNNDataType::u8 : src_dt;
|
|
|
|
auto src_md =
|
|
platform::MKLDNNMemDesc({src_tz}, src_dt, MKLDNNMemoryFormat::nhwc);
|
|
src_memory = std::make_shared<dnnl::memory>(src_md, engine,
|
|
to_void_cast<T>(input_data));
|
|
auto dst_md =
|
|
platform::MKLDNNMemDesc({dst_tz}, dst_dt, MKLDNNMemoryFormat::nhwc);
|
|
|
|
dnnl::primitive_attr attri;
|
|
int mask = 0;
|
|
attri.set_output_scales(mask, {reorder_scale});
|
|
if (with_shift) {
|
|
mkldnn::post_ops post_operations;
|
|
post_operations.append_sum();
|
|
attri.set_post_ops(post_operations);
|
|
uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
|
|
uint8_t reorder_shift =
|
|
clip_to_uint8(shift_out - reorder_scale * shift_in);
|
|
std::memset(output_data, reorder_shift, output->numel());
|
|
dst_memory = std::make_shared<dnnl::memory>(
|
|
dst_md, engine, to_void_cast<uint8_t>(output_data));
|
|
} else {
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
dst_memory = std::make_shared<dnnl::memory>(
|
|
dst_md, engine, to_void_cast<T>(output_data));
|
|
}
|
|
|
|
auto reorder_pd =
|
|
reorder::primitive_desc(*src_memory, *dst_memory, attri);
|
|
reorder_p = std::make_shared<reorder>(reorder_pd);
|
|
|
|
dev_ctx.SetBlob(key_prim, reorder_p);
|
|
dev_ctx.SetBlob(key_src_mem, src_memory);
|
|
dev_ctx.SetBlob(key_dst_mem, dst_memory);
|
|
} else {
|
|
src_memory =
|
|
std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_src_mem));
|
|
src_memory->set_data_handle(to_void_cast<T>(input_data));
|
|
|
|
dst_memory =
|
|
std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(key_dst_mem));
|
|
if (with_shift) {
|
|
uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
|
|
uint8_t reorder_shift =
|
|
clip_to_uint8(shift_out - reorder_scale * shift_in);
|
|
std::memset(output_data, reorder_shift, output->numel());
|
|
dst_memory->set_data_handle(output_data);
|
|
|
|
} else {
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
dst_memory->set_data_handle(output_data);
|
|
}
|
|
}
|
|
|
|
dnnl::stream astream(engine);
|
|
{
|
|
platform::RecordEvent record_reorder("int_reorder",
|
|
platform::EventRole::kUniqueOp);
|
|
reorder_p->execute(astream, *src_memory, *dst_memory);
|
|
astream.wait();
|
|
}
|
|
|
|
output->set_layout(framework::DataLayout::kMKLDNN);
|
|
output->set_format(platform::GetMKLDNNFormat(*dst_memory));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(requantize, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::ReQuantOpKernel<int8_t>, ops::ReQuantOpKernel<uint8_t>);
|