You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
169 lines
6.2 KiB
169 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/modified_huber_loss_op.h"
|
|
#include <memory>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ModifiedHuberLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ModifiedHuberLoss");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ModifiedHuberLoss");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2, platform::errors::InvalidArgument(
|
|
"Input(input) rank should be 2, "
|
|
"but received input rank(%d) != 2",
|
|
x_dims.size()));
|
|
|
|
if (ctx->IsRuntime() ||
|
|
(framework::product(x_dims) > 0 && framework::product(y_dims) > 0)) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims, y_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The Input(input) and Input(label) should have the same "
|
|
"shape, but received input shape [%s] != label shape [%s]",
|
|
x_dims, y_dims));
|
|
}
|
|
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(x_dims[1], 1,
|
|
platform::errors::InvalidArgument(
|
|
"The second dimension of Input(input) should be 1, "
|
|
"but received second dimension of input (%d) != 1",
|
|
x_dims[1]));
|
|
}
|
|
|
|
ctx->SetOutputDim("IntermediateVal", x_dims);
|
|
ctx->SetOutputDim("Out", {x_dims[0], 1});
|
|
}
|
|
};
|
|
|
|
class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"The input tensor of modified huber loss op. "
|
|
"X is 2-D tensor with shape [batch_size, 1].");
|
|
AddInput("Y",
|
|
"The target labels of modified huber loss op. "
|
|
"The shape of Y is the same as X. Values of Y must be 0 or 1.");
|
|
AddOutput("IntermediateVal",
|
|
"Variable to save intermediate result which will be reused in "
|
|
"backward processing.")
|
|
.AsIntermediate();
|
|
AddOutput("Out", "Classification loss for X.");
|
|
AddComment(R"DOC(
|
|
Modified Huber Loss Operator.
|
|
|
|
This operator is used in binary classification problem. The shape of
|
|
input X and target Y are both [N, 1] and so is the shape of the output loss.
|
|
Since target Y is not differentiable, calculating gradient for Y is illegal.
|
|
The formula of modified huber loss is:
|
|
|
|
$$
|
|
L(y, f(x)) =
|
|
\begin{cases}
|
|
(\max(0, 1 - yf(x)))^2, \text{if} \ yf(x) >= -1 \\
|
|
-4yf(x), \quad \text{otherwise}
|
|
\end{cases}
|
|
$$
|
|
|
|
Make sure the values of target label Y are in {0, 1} here. This operator will
|
|
scale values of Y to {-1, +1} when computing losses and gradients.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ModifiedHuberLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ModifiedHuberLossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("IntermediateVal"), "Input", "IntermediateVal",
|
|
"ModifiedHuberLossGrad");
|
|
OP_INOUT_CHECK(ctx->HasInputs(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "ModifiedHuberLossGrad");
|
|
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
auto intermediate_dims = ctx->GetInputDim("IntermediateVal");
|
|
auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
|
|
if (ctx->IsRuntime()) {
|
|
PADDLE_ENFORCE_EQ(
|
|
intermediate_dims, y_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The shape of Intermediate variable which will be reused in "
|
|
"backward processing should the same as "
|
|
"the shape of Input(label), but received Intermediate variable "
|
|
"shape [%s] != label shape [%s]",
|
|
intermediate_dims, y_dims));
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
out_grad_dims, y_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The shape of output gradient should be the same as "
|
|
"the shape of Input(label), but received the output gradient "
|
|
"shape [%s] != label shape [%s]",
|
|
out_grad_dims, y_dims));
|
|
}
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), y_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class ModifiedHuberLossGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("modified_huber_loss_grad");
|
|
op->SetInput("Y", this->Input("Y"));
|
|
op->SetInput("IntermediateVal", this->Output("IntermediateVal"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
modified_huber_loss, ops::ModifiedHuberLossOp,
|
|
ops::ModifiedHuberLossOpMaker,
|
|
ops::ModifiedHuberLossGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::ModifiedHuberLossGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(modified_huber_loss_grad, ops::ModifiedHuberLossGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
modified_huber_loss,
|
|
ops::ModifiedHuberLossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad,
|
|
ops::ModifiedHuberLossGradCPUKernel<float>);
|