You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/optimizers/adagrad_op.h

116 lines
4.8 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
struct SparseAdagradFunctor {
void operator()(const DeviceContext &context,
const framework::SelectedRows &grad,
const framework::Tensor &learning_rate, T epsilon,
framework::Tensor *moment, framework::Tensor *param);
};
template <typename DeviceContext, typename T>
framework::SelectedRows SquareSelectedRows(
const DeviceContext &context, const framework::SelectedRows &input) {
framework::SelectedRows out;
out.set_rows(input.rows());
out.set_height(input.height());
out.mutable_value()->mutable_data<T>(input.value().dims(),
context.GetPlace());
auto e_out = framework::EigenVector<T>::Flatten(*(out.mutable_value()));
auto e_in = framework::EigenVector<T>::Flatten(input.value());
e_out.device(*context.eigen_device()) = e_in.square();
return out;
}
template <typename DeviceContext, typename T>
class AdagradOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *param_var = ctx.InputVar("Param");
PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
platform::errors::InvalidArgument(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.InputNames("Param").front(),
framework::ToTypeName(param_var->Type())));
auto *param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
auto *moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
param_out_tensor->mutable_data<T>(ctx.GetPlace());
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
auto *grad_var = ctx.InputVar("Grad");
if (grad_var->IsType<framework::LoDTensor>()) {
auto param = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Param"));
auto grad = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Grad"));
auto moment = framework::EigenVector<T>::Flatten(
*ctx.Input<framework::Tensor>("Moment"));
auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
auto *place = ctx.template device_context<DeviceContext>().eigen_device();
moment_out.device(*place) = moment + grad * grad;
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
if (platform::is_cpu_place(ctx.GetPlace())) {
auto *lr = learning_rate->data<T>();
param_out.device(*place) =
param - lr[0] * grad / (moment_out.sqrt() + epsilon);
} else {
auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
param_out.device(*place) =
param -
lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
}
} else if (grad_var->IsType<framework::SelectedRows>()) {
auto *param_tensor = ctx.Input<framework::Tensor>("Param");
PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor,
platform::errors::InvalidArgument(
"the input tensor not euqal with output tensor"));
auto *moment_tensor = ctx.Input<framework::Tensor>("Moment");
PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor,
platform::errors::InvalidArgument(
"the input moment not eual with output moment"));
SparseAdagradFunctor<DeviceContext, T> functor;
functor(ctx.template device_context<DeviceContext>(),
*ctx.Input<framework::SelectedRows>("Grad"),
*ctx.Input<framework::Tensor>("LearningRate"), epsilon,
moment_out_tensor, param_out_tensor);
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Unsupported Variable Type of Grad"));
}
}
};
} // namespace operators
} // namespace paddle