You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/optimizers/dgc_momentum_op.h

80 lines
2.8 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/operators/optimizers/momentum_op.h"
#include "paddle/fluid/operators/optimizers/sgd_op.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class DGCMomentumKernel : public framework::OpKernel<T> {
public:
DGCMomentumKernel()
: _momentum_op_kernel(new MomentumOpKernel<DeviceContext, T>()),
_sgd_op_kernel(new SGDOpKernel<DeviceContext, T>()) {}
void Compute(const framework::ExecutionContext& context) const override {
auto rampup_begin_step = context.Attr<float>("rampup_begin_step");
if (static_cast<int>(rampup_begin_step) < 0) {
return;
}
auto current_step_tensor = context.Input<framework::Tensor>("current_step");
auto* current_step = current_step_tensor->data<T>();
// nranks
auto nranks_tensor = context.Input<framework::Tensor>("nranks");
const int nranks = static_cast<const int>(*nranks_tensor->data<float>());
PADDLE_ENFORCE_GT(
nranks, 1,
platform::errors::InvalidArgument(
"DGC is not useful when num_trainers <= 1, but now nranks=%d",
nranks));
const framework::Tensor* g = context.Input<framework::Tensor>("Grad");
framework::Tensor* g_out = context.Output<framework::Tensor>("Grad_out");
auto g_e = framework::EigenVector<T>::Flatten(*g);
auto g_out_e = framework::EigenVector<T>::Flatten(*g_out);
auto& dev_ctx = context.template device_context<DeviceContext>();
auto& eigen_ctx = *dev_ctx.eigen_device();
// NOTE. In dgc_op we multi grad with nranks, so we need /nranks here.
g_out_e.device(eigen_ctx) = (1.0 / nranks) * g_e;
VLOG(10) << "current_step:" << *current_step
<< ", rampup_begin_step:" << rampup_begin_step;
if (static_cast<int>(*current_step) < static_cast<int>(rampup_begin_step)) {
VLOG(10) << " so use momentum optimizer";
return _momentum_op_kernel->Compute(context);
}
VLOG(10) << " so use sgd optimizer";
return _sgd_op_kernel->Compute(context);
}
private:
std::unique_ptr<MomentumOpKernel<DeviceContext, T>> _momentum_op_kernel;
std::unique_ptr<SGDOpKernel<DeviceContext, T>> _sgd_op_kernel;
};
} // namespace operators
} // namespace paddle