You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
5.0 KiB
131 lines
5.0 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/optimizers/dpsgd_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
class DpsgdOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Param"), true,
|
|
platform::errors::NotFound(
|
|
"Input(Param) of DpsgdOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("Grad"), true,
|
|
platform::errors::NotFound(
|
|
"Input(Grad) of DpsgdOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("LearningRate"), true,
|
|
platform::errors::NotFound(
|
|
"Input(LearningRate) of DpsgdOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->GetInputsVarType("Param").front(),
|
|
framework::proto::VarType::LOD_TENSOR,
|
|
platform::errors::InvalidArgument(
|
|
"The input var's type should be LoDTensor, but the received is %s",
|
|
ctx->GetInputsVarType("Param").front()));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->GetInputsVarType("Grad").front(),
|
|
framework::proto::VarType::LOD_TENSOR,
|
|
platform::errors::InvalidArgument(
|
|
"The input var's type should be LoDTensor, but the received is %s",
|
|
ctx->GetInputsVarType("Grad").front()));
|
|
|
|
PADDLE_ENFORCE_EQ(ctx->HasOutput("ParamOut"), true,
|
|
platform::errors::NotFound(
|
|
"Output(ParamOut) of DpsgdOp should not be null."));
|
|
|
|
auto lr_dims = ctx->GetInputDim("LearningRate");
|
|
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
|
platform::errors::InvalidArgument(
|
|
"Learning rate should have 1 dimension. But Received "
|
|
"LearningRate's dims [%s].",
|
|
framework::product(lr_dims)));
|
|
auto param_dims = ctx->GetInputDim("Param");
|
|
PADDLE_ENFORCE_EQ(
|
|
param_dims, ctx->GetInputDim("Grad"),
|
|
platform::errors::InvalidArgument(
|
|
"Param and Grad input of DpsgdOp should have same dimension. But "
|
|
"received Para's dim [%s] and Grad's dim [%s].",
|
|
param_dims, ctx->GetInputDim("Grad")));
|
|
|
|
ctx->SetOutputDim("ParamOut", param_dims);
|
|
}
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "Param"), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class DpsgdOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Param", "(Tensor) Input parameter");
|
|
AddInput("Grad", "(Tensor) Input gradient");
|
|
AddInput("LearningRate", "(Tensor) Learning rate");
|
|
|
|
AddOutput("ParamOut", "(Tensor) Output parameter");
|
|
|
|
AddAttr<float>("clip",
|
|
"(float, default 0.9) "
|
|
"Exponential decay rate for the "
|
|
"1st moment estimates.")
|
|
.SetDefault(10.0f);
|
|
AddAttr<float>("batch_size",
|
|
"(float, default 0.999) "
|
|
"exponential decay rate for the weighted "
|
|
"infinity norm estimates.")
|
|
.SetDefault(16.0f);
|
|
AddAttr<float>("sigma",
|
|
"(float, default 1.0e-8) "
|
|
"Constant for numerical stability")
|
|
.SetDefault(1.0f);
|
|
AddAttr<int>(
|
|
"seed",
|
|
"(int, default 0) "
|
|
"This property is only used for debugging, users do not need to set it."
|
|
"Random seed for generating samples. If seed is set to 0, this "
|
|
"operator will use the"
|
|
"system's random number seed, otherwise, this operator will always "
|
|
"generate the same random"
|
|
"number every time.")
|
|
.SetDefault(0);
|
|
AddComment(R"DOC(
|
|
Dpsgd Optimizer.
|
|
|
|
We implement the Dpsgd optimizer according to CCS16 paper -
|
|
Deep Learning with Differential Privacy.
|
|
|
|
Dpsgd updates:
|
|
CCS16 - Deep Learning with Differential Privacy.
|
|
[https://arxiv.org/abs/1607.00133]
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(dpsgd, ops::DpsgdOp, ops::DpsgdOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
dpsgd, ops::DpsgdOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::DpsgdOpKernel<paddle::platform::CPUDeviceContext, double>);
|