You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.5 KiB
186 lines
6.5 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/p_norm_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class PnormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) A tensor of rank >= axis.");
|
|
AddAttr<float>("porder",
|
|
"(float, default 2) The porder is the p order vector norm "
|
|
"to calculate. Available for porder=0, inf, -inf and any "
|
|
"real number.")
|
|
.SetDefault(2.0f);
|
|
AddAttr<int>("axis",
|
|
"The axis on which to apply norm operation. If axis < 0, "
|
|
"the dimension to pnorm is rank(X) + axis. -1 is "
|
|
"the last dimension.")
|
|
.SetDefault(-1);
|
|
AddAttr<float>("epsilon",
|
|
"(float, default 1e-12) The epsilon value is used "
|
|
"to avoid division by zero.")
|
|
.SetDefault(1.0e-12f);
|
|
AddAttr<bool>(
|
|
"keepdim",
|
|
"(bool, default false) Whether to keep the dimensions as the input.")
|
|
.SetDefault(false);
|
|
|
|
AddAttr<bool>("asvector",
|
|
"(bool, default false) as vector norm when axis is None and "
|
|
"input is matrix, ")
|
|
.SetDefault(false);
|
|
AddOutput("Out", "(Tensor) Output result tensor of p-norm");
|
|
AddComment(R"DOC(
|
|
Pnorm Operator.
|
|
Given a tensor X, compute Lp-norm of X.
|
|
|
|
When p = 0, defining $0^0 = 0$, the zero-norm of X is simply the number of non-zero elements of X.
|
|
$$
|
|
||X||_{0} = \lim_{p \rightarrow 0} \sum_i |x_i|^p
|
|
$$
|
|
|
|
When p = inf, the inf-norm of X is the maximum element of X.
|
|
$$
|
|
||X||_\infty = \max_i |x_i|
|
|
$$
|
|
|
|
When p = -inf, the negative-inf-norm of X is the minimum element of X.
|
|
$$
|
|
||X||_{-\infty} = \min_i |x_i|
|
|
$$
|
|
|
|
Otherwise, the p-norm of X follows the formula,
|
|
$$
|
|
||X||_{p} = (\sum_i |x_i|^p)^{1/p}
|
|
$$
|
|
where, $\sum_i $ is calculated along the `axis` dimension.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class PnormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "p_norm");
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto x_rank = x_dim.size();
|
|
int axis = ctx->Attrs().Get<int>("axis");
|
|
bool keepdim = ctx->Attrs().Get<bool>("keepdim");
|
|
|
|
PADDLE_ENFORCE_GE(axis, -x_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], R is "
|
|
"the rank of Input(X). But received axis: %d, R: %d. "
|
|
"Current Input(X)'s shape is=[%s].",
|
|
axis, x_rank, x_dim));
|
|
PADDLE_ENFORCE_LT(axis, x_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Attr(axis) value should be in range [-R, R-1], R is "
|
|
"the rank of Input(X). But received axis: %d, R: %d. "
|
|
"Current Input(X)'s shape is=[%s].",
|
|
axis, x_rank, x_dim));
|
|
|
|
std::vector<int> reduce_dims;
|
|
bool asvector = ctx->Attrs().Get<bool>("asvector");
|
|
if (asvector) {
|
|
reduce_dims.emplace_back(1);
|
|
if (keepdim) {
|
|
for (int i = 1; i < x_dim.size(); ++i) {
|
|
reduce_dims.emplace_back(1);
|
|
}
|
|
x_dim = framework::make_ddim(reduce_dims);
|
|
}
|
|
} else {
|
|
if (axis < 0) axis = x_dim.size() + axis;
|
|
for (int i = 0; i < x_dim.size(); ++i) {
|
|
if (i != axis) reduce_dims.emplace_back(x_dim[i]);
|
|
}
|
|
if (reduce_dims.size() == 0) {
|
|
reduce_dims.emplace_back(1);
|
|
}
|
|
}
|
|
x_dim[axis] = 1;
|
|
|
|
if (keepdim) {
|
|
ctx->SetOutputDim("Out", x_dim);
|
|
} else {
|
|
ctx->SetOutputDim("Out", framework::make_ddim(reduce_dims));
|
|
}
|
|
}
|
|
};
|
|
|
|
class PnormOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "p_norm");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
"X@GRAD", "p_norm");
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PnormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("p_norm_grad");
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Out", this->Output("Out"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using CPU = paddle::platform::CPUDeviceContext;
|
|
|
|
REGISTER_OPERATOR(p_norm, ops::PnormOp, ops::PnormOpMaker,
|
|
ops::PnormOpGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::PnormOpGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(p_norm_grad, ops::PnormOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(p_norm, ops::PnormKernel<CPU, float>,
|
|
ops::PnormKernel<CPU, double>);
|
|
REGISTER_OP_CPU_KERNEL(p_norm_grad, ops::PnormGradKernel<CPU, float>,
|
|
ops::PnormGradKernel<CPU, double>);
|
|
REGISTER_OP_VERSION(p_norm)
|
|
.AddCheckpoint(
|
|
R"ROC(
|
|
Upgrade p_norm, add 1 attribute [asvector].
|
|
)ROC",
|
|
paddle::framework::compatible::OpVersionDesc().NewAttr(
|
|
"asvector",
|
|
"Compute as vector when axis is None and input is matrix", false));
|