You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reduce_ops/reduce_sum_op.cc

137 lines
4.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h"
#include <string>
namespace paddle {
namespace framework {
class OpDesc;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
} // namespace platform
} // namespace paddle
namespace paddle {
namespace operators {
// NOTE: Input(Out) is unnecessary in reduce_sum_grad, and Input(X) needs no
// buffer
template <typename T>
class ReduceSumOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("reduce_sum_grad");
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
int in_dtype = ctx.Attr<int>("in_dtype");
if (in_dtype >= 0) {
return framework::OpKernelType(
static_cast<framework::proto::VarType::Type>(in_dtype),
ctx.GetPlace());
}
return framework::OpKernelType(
framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.GetPlace());
}
};
template <typename T>
class ReduceSumDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
op->SetAttrMap(this->Attrs());
op->SetType("reduce_sum");
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReduceSumGradNoNeedBufferVarInferer, "X");
class ReduceSumVarTypeInference : public paddle::framework::VarTypeInference {
public:
void operator()(paddle::framework::InferVarTypeContext* ctx) const override {
auto data_type = static_cast<paddle::framework::proto::VarType::Type>(
BOOST_GET_CONST(int, ctx->GetAttr("out_dtype")));
if (data_type >= 0) {
ctx->SetOutputDataType("Out", data_type);
}
}
};
} // namespace operators
} // namespace paddle
class ReduceSumOpMaker : public ops::ReduceOpMaker {
protected:
virtual std::string GetName() const { return "reduce_sum"; }
virtual std::string GetOpType() const { return "Reduce reduce_sum"; }
};
REGISTER_OPERATOR(reduce_sum, ops::ReduceOp, ReduceSumOpMaker,
ops::ReduceSumVarTypeInference,
ops::ReduceSumOpGradMaker<paddle::framework::OpDesc>,
ops::ReduceSumOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(reduce_sum_grad, ops::ReduceGradOp,
ops::ReduceSumDoubleOpGradMaker<paddle::framework::OpDesc>,
ops::ReduceSumDoubleOpGradMaker<paddle::imperative::OpBase>,
ops::ReduceSumGradNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL(
reduce_sum, ops::ReduceKernel<paddle::platform::CPUDeviceContext, float,
ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext, double,
ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int, ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext, int64_t,
ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64, ops::SumFunctor>,
ops::ReduceKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128,
ops::SumFunctor>);
template <typename T>
using CPUReduceSumGradKernel =
ops::ReduceSumGradKernel<paddle::platform::CPUDeviceContext, T,
ops::SumGradFunctor, true>;
REGISTER_OP_CPU_KERNEL(reduce_sum_grad, CPUReduceSumGradKernel<float>,
CPUReduceSumGradKernel<double>,
CPUReduceSumGradKernel<int>,
CPUReduceSumGradKernel<int64_t>,
CPUReduceSumGradKernel<paddle::platform::complex64>,
CPUReduceSumGradKernel<paddle::platform::complex128>);