You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
226 lines
8.4 KiB
226 lines
8.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
#include "paddle/fluid/operators/roi_align_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class XPUROIAlignOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
auto* out = ctx.Output<Tensor>("Out");
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
|
|
|
|
auto in_dims = in->dims();
|
|
int batch_size = in_dims[0];
|
|
int channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
if (rois_num == 0) return;
|
|
|
|
Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({rois_num});
|
|
auto cplace = platform::CPUPlace();
|
|
int* roi_batch_id_data = roi_batch_id_list.mutable_data<int>(cplace);
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto xplace = BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace());
|
|
int rois_batch_size = 0;
|
|
int* cpu_lod = nullptr;
|
|
if (ctx.HasInput("RoisNum")) {
|
|
auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
|
|
rois_batch_size = rois_num_t->numel();
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_batch_size, batch_size,
|
|
platform::errors::InvalidArgument(
|
|
"The rois_batch_size and imgs "
|
|
"batch_size must be the same. But received rois_batch_size = %d, "
|
|
"batch_size = %d",
|
|
rois_batch_size, batch_size));
|
|
|
|
std::vector<int> rois_num_list(rois_batch_size);
|
|
memory::Copy(cplace, rois_num_list.data(), xplace,
|
|
rois_num_t->data<int>(), sizeof(int) * rois_batch_size);
|
|
cpu_lod = new int[rois_batch_size + 1];
|
|
cpu_lod[0] = 0;
|
|
for (int i = 0; i < rois_batch_size; i++) {
|
|
cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i];
|
|
}
|
|
} else {
|
|
auto lod = rois->lod();
|
|
PADDLE_ENFORCE_EQ(
|
|
lod.empty(), false,
|
|
platform::errors::InvalidArgument("Input(ROIs) in ROIAlignOp does "
|
|
"not contain LoD information."));
|
|
auto rois_lod = lod.back();
|
|
rois_batch_size = rois_lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_batch_size, batch_size,
|
|
platform::errors::InvalidArgument(
|
|
"The batch size of rois and batch size "
|
|
"of images must be the same. But received rois batch size = %d, "
|
|
"and images batch size = %d",
|
|
rois_batch_size, batch_size));
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_num, rois_num_with_lod,
|
|
platform::errors::InvalidArgument(
|
|
"The actual number of rois and the number of rois "
|
|
"provided from Input(RoIsLoD) in RoIAlign must be the same."
|
|
" But received actual number of rois is %d, and the number "
|
|
"of rois from RoIsLoD is %d",
|
|
rois_num, rois_num_with_lod));
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
roi_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
cpu_lod = new int[rois_batch_size + 1];
|
|
for (int i = 0; i < rois_batch_size + 1; i++) {
|
|
cpu_lod[i] = rois_lod[i];
|
|
}
|
|
}
|
|
|
|
int* roi_id_data = nullptr;
|
|
int r = xpu_malloc(reinterpret_cast<void**>(&roi_id_data),
|
|
(rois_batch_size + 1) * sizeof(int));
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External("no enough memory in xpu"));
|
|
memory::Copy(xplace, roi_id_data, cplace, cpu_lod,
|
|
(rois_batch_size + 1) * sizeof(int));
|
|
delete[] cpu_lod;
|
|
r = xpu::roi_align<T, int>(
|
|
dev_ctx.x_context(), in->data<T>(),
|
|
out->mutable_data<T>(ctx.GetPlace()), rois->data<T>(), roi_id_data,
|
|
batch_size, channels, height, width, out->dims()[0], pooled_height,
|
|
pooled_width, spatial_scale, sampling_ratio, true);
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The roi_align XPU OP return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
if (dev_ctx.x_context()->xpu_stream) {
|
|
dev_ctx.Wait();
|
|
}
|
|
xpu_free(roi_id_data);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class XPUROIAlignGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<Tensor>("X");
|
|
auto* rois = ctx.Input<LoDTensor>("ROIs");
|
|
|
|
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* in_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
|
|
|
|
int rois_num = rois->dims()[0];
|
|
int channels = in->dims()[1];
|
|
int height = in->dims()[2];
|
|
int width = in->dims()[3];
|
|
|
|
if (!in_grad) {
|
|
return;
|
|
}
|
|
Tensor roi_batch_id_list;
|
|
roi_batch_id_list.Resize({rois_num});
|
|
auto cplace = platform::CPUPlace();
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
auto xplace = BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace());
|
|
|
|
int rois_batch_size = 0;
|
|
int* cpu_lod = nullptr;
|
|
if (ctx.HasInput("RoisNum")) {
|
|
auto* rois_num_t = ctx.Input<Tensor>("RoisNum");
|
|
rois_batch_size = rois_num_t->numel();
|
|
std::vector<int> rois_num_list(rois_batch_size);
|
|
memory::Copy(cplace, rois_num_list.data(), xplace,
|
|
rois_num_t->data<int>(), sizeof(int) * rois_batch_size);
|
|
cpu_lod = new int[rois_batch_size + 1];
|
|
cpu_lod[0] = 0;
|
|
for (int i = 0; i < rois_batch_size; i++) {
|
|
cpu_lod[i + 1] = cpu_lod[i] + rois_num_list[i];
|
|
}
|
|
} else {
|
|
auto rois_lod = rois->lod().back();
|
|
rois_batch_size = rois_lod.size() - 1;
|
|
cpu_lod = new int[rois_batch_size + 1];
|
|
for (int i = 0; i < rois_batch_size + 1; i++) {
|
|
cpu_lod[i] = rois_lod[i];
|
|
}
|
|
}
|
|
int* roi_id_data = nullptr;
|
|
int r = xpu_malloc(reinterpret_cast<void**>(&roi_id_data),
|
|
(rois_batch_size + 1) * sizeof(int));
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External("no enough memory in xpu"));
|
|
memory::Copy(xplace, roi_id_data, cplace, cpu_lod,
|
|
(rois_batch_size + 1) * sizeof(int));
|
|
in_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
int output_grad_size = out_grad->numel();
|
|
|
|
delete[] cpu_lod;
|
|
if (output_grad_size > 0) {
|
|
r = xpu::roi_align_grad<T, int>(
|
|
dev_ctx.x_context(), out_grad->data<T>(), in_grad->data<T>(),
|
|
rois->data<T>(), roi_id_data, in->dims()[0], channels, height, width,
|
|
out_grad->dims()[0], pooled_height, pooled_width, spatial_scale,
|
|
sampling_ratio, true);
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The roi_align_grad XPU OP return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
}
|
|
if (dev_ctx.x_context()->xpu_stream) {
|
|
dev_ctx.Wait();
|
|
}
|
|
xpu_free(roi_id_data);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_XPU_KERNEL(
|
|
roi_align,
|
|
ops::XPUROIAlignOpKernel<paddle::platform::XPUDeviceContext, float>);
|
|
REGISTER_OP_XPU_KERNEL(
|
|
roi_align_grad,
|
|
ops::XPUROIAlignGradOpKernel<paddle::platform::XPUDeviceContext, float>);
|
|
|
|
#endif
|