You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
7.4 KiB
182 lines
7.4 KiB
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/roll_op.h"
|
|
#include "paddle/fluid/platform/cuda_primitives.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using platform::PADDLE_CUDA_NUM_THREADS;
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
template <typename T>
|
|
__global__ void roll_cuda_kernel(const T* input, T* output, int64_t N,
|
|
int64_t* shifts, int64_t* strides,
|
|
int64_t* sizes, int64_t nums) {
|
|
int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
if (idx >= N) {
|
|
return;
|
|
}
|
|
int64_t output_idx = idx;
|
|
int64_t dim_idx, dim_idx_shift;
|
|
for (int64_t i = 0; i < nums; i++) {
|
|
dim_idx = idx % (strides[i] * sizes[i]) / strides[i];
|
|
dim_idx_shift = (dim_idx + shifts[i]) % sizes[i];
|
|
output_idx = output_idx + (dim_idx_shift - dim_idx) * strides[i];
|
|
}
|
|
output[output_idx] = input[idx];
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class RollCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>("X");
|
|
auto* out = context.Output<LoDTensor>("Out");
|
|
std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
|
|
std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");
|
|
|
|
auto* in_data = in->data<T>();
|
|
auto* out_data = out->mutable_data<T>(context.GetPlace());
|
|
int64_t numel = in->numel();
|
|
auto stream =
|
|
context.template device_context<platform::CUDADeviceContext>().stream();
|
|
|
|
size_t nums = shifts.size();
|
|
auto input_dim = in->dims();
|
|
auto stride_dim = framework::stride(input_dim);
|
|
|
|
int64_t dim, size;
|
|
size_t gpu_memory_size_ = sizeof(int64_t) * nums;
|
|
std::vector<int64_t> strides, sizes;
|
|
strides.resize(nums);
|
|
sizes.resize(nums);
|
|
paddle::memory::AllocationPtr shifts_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
paddle::memory::AllocationPtr strides_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
paddle::memory::AllocationPtr sizes_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
|
|
for (size_t i = 0; i < nums; i++) {
|
|
dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
|
|
size = input_dim[dim];
|
|
shifts[i] = (shifts[i] % size + size) % size;
|
|
strides[i] = stride_dim[dim];
|
|
sizes[i] = size;
|
|
}
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, shifts_gpu->place()),
|
|
shifts_gpu->ptr(), platform::CPUPlace(), shifts.data(),
|
|
gpu_memory_size_, stream);
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, strides_gpu->place()),
|
|
strides_gpu->ptr(), platform::CPUPlace(), strides.data(),
|
|
gpu_memory_size_, stream);
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, sizes_gpu->place()),
|
|
sizes_gpu->ptr(), platform::CPUPlace(), sizes.data(), gpu_memory_size_,
|
|
stream);
|
|
int64_t* shifts_ptr = reinterpret_cast<int64_t*>(shifts_gpu->ptr());
|
|
int64_t* strides_ptr = reinterpret_cast<int64_t*>(strides_gpu->ptr());
|
|
int64_t* sizes_ptr = reinterpret_cast<int64_t*>(sizes_gpu->ptr());
|
|
|
|
roll_cuda_kernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
in_data, out_data, numel, shifts_ptr, strides_ptr, sizes_ptr, nums);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class RollGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* in = context.Input<LoDTensor>(framework::GradVarName("Out"));
|
|
auto* out = context.Output<LoDTensor>(framework::GradVarName("X"));
|
|
std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
|
|
std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");
|
|
|
|
auto* in_data = in->data<T>();
|
|
auto* out_data = out->mutable_data<T>(context.GetPlace());
|
|
int64_t numel = in->numel();
|
|
auto stream =
|
|
context.template device_context<platform::CUDADeviceContext>().stream();
|
|
size_t nums = shifts.size();
|
|
auto input_dim = in->dims();
|
|
auto stride_dim = framework::stride(input_dim);
|
|
|
|
int64_t dim, size;
|
|
size_t gpu_memory_size_ = sizeof(int64_t) * nums;
|
|
std::vector<int64_t> strides, sizes;
|
|
strides.resize(nums);
|
|
sizes.resize(nums);
|
|
paddle::memory::AllocationPtr shifts_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
paddle::memory::AllocationPtr strides_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
paddle::memory::AllocationPtr sizes_gpu =
|
|
memory::Alloc(context.GetPlace(), gpu_memory_size_);
|
|
|
|
for (size_t i = 0; i < nums; i++) {
|
|
dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
|
|
size = input_dim[dim];
|
|
shifts[i] = ((0 - shifts[i]) % size + size) % size;
|
|
strides[i] = stride_dim[dim];
|
|
sizes[i] = size;
|
|
}
|
|
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, shifts_gpu->place()),
|
|
shifts_gpu->ptr(), platform::CPUPlace(), shifts.data(),
|
|
gpu_memory_size_, stream);
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, strides_gpu->place()),
|
|
strides_gpu->ptr(), platform::CPUPlace(), strides.data(),
|
|
gpu_memory_size_, stream);
|
|
paddle::memory::Copy(
|
|
BOOST_GET_CONST(platform::CUDAPlace, sizes_gpu->place()),
|
|
sizes_gpu->ptr(), platform::CPUPlace(), sizes.data(), gpu_memory_size_,
|
|
stream);
|
|
int64_t* shifts_ptr = reinterpret_cast<int64_t*>(shifts_gpu->ptr());
|
|
int64_t* strides_ptr = reinterpret_cast<int64_t*>(strides_gpu->ptr());
|
|
int64_t* sizes_ptr = reinterpret_cast<int64_t*>(sizes_gpu->ptr());
|
|
|
|
roll_cuda_kernel<<<(numel + PADDLE_CUDA_NUM_THREADS - 1) /
|
|
PADDLE_CUDA_NUM_THREADS,
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
in_data, out_data, numel, shifts_ptr, strides_ptr, sizes_ptr, nums);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
roll, ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, double>,
|
|
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, int>,
|
|
ops::RollCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
roll_grad,
|
|
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
|
|
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, double>,
|
|
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, int>,
|
|
ops::RollGradCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
|