You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
5.7 KiB
158 lines
5.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/split_op.h"
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SplitOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of SplitOp should not be null."));
|
|
PADDLE_ENFORCE_GE(ctx->Outputs("Out").size(), 1UL,
|
|
platform::errors::InvalidArgument(
|
|
"Outputs(Out) of SplitOp should not be empty."));
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
auto outs_names = ctx->Outputs("Out");
|
|
size_t axis = static_cast<size_t>(ctx->Attrs().Get<int>("axis"));
|
|
size_t num = static_cast<size_t>(ctx->Attrs().Get<int>("num"));
|
|
std::vector<int> sections = static_cast<std::vector<int>>(
|
|
ctx->Attrs().Get<std::vector<int>>("sections"));
|
|
const size_t outs_number = outs_names.size();
|
|
|
|
if (sections.size() > 0) {
|
|
PADDLE_ENFORCE_EQ(
|
|
sections.size(), outs_number,
|
|
platform::errors::InvalidArgument("tensor split sections size "
|
|
"should be equal to output size."));
|
|
}
|
|
|
|
if (ctx->HasInput("AxisTensor")) {
|
|
auto out_dims =
|
|
framework::make_ddim(std::vector<int>(in_dims.size(), -1));
|
|
std::vector<framework::DDim> outs_dims(outs_number, out_dims);
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
ctx->ShareLoD("X", "Out", 0, i);
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool each_section_is_known =
|
|
(sections.size() > 0 && !ctx->HasInputs("SectionsTensorList"));
|
|
|
|
auto outs_dims = UpdateOutsDims(ctx->IsRuntime(), each_section_is_known,
|
|
in_dims, num, sections, axis, outs_number);
|
|
ctx->SetOutputsDim("Out", outs_dims);
|
|
if (axis != 0) {
|
|
// Only pass LoD when not spliting along the first dim.
|
|
for (size_t i = 0; i < outs_number; ++i) {
|
|
ctx->ShareLoD("X", "Out", 0, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
|
|
ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const override {
|
|
if (var_name == "AxisTensor" || var_name == "SectionsTensorList") {
|
|
return expected_kernel_type;
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class SplitOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input tensor of the split operator.");
|
|
AddInput("AxisTensor",
|
|
"(Tensor) The axis which the input will be split on. "
|
|
"It has higher priority than Attr(axis). "
|
|
"The shape of AxisTensor must be [1]")
|
|
.AsDispensable();
|
|
AddInput("SectionsTensorList",
|
|
"(vector<Tensor<int>>, optional). "
|
|
"The length of each output along the specified axis. "
|
|
"It has a higher priority than Attr(sections)."
|
|
"The shape of the element in vector must be [1].")
|
|
.AsDuplicable()
|
|
.AsDispensable();
|
|
AddOutput("Out", "(Tensor) Output tensors of the split operator.")
|
|
.AsDuplicable();
|
|
AddComment(R"DOC(
|
|
Split operator
|
|
|
|
This operator splits the input tensor into multiple sub-tensors.
|
|
|
|
Example:
|
|
Input = [[1,2],
|
|
[3,4],
|
|
[5,6]]
|
|
sections = [2,1]
|
|
axis = 0
|
|
Output[0] = [[1,2],
|
|
[3,4]]
|
|
Output[1] = [[5,6]]
|
|
|
|
)DOC");
|
|
AddAttr<std::vector<int>>("sections",
|
|
"(vector<int>) "
|
|
"the length of each output along the "
|
|
"specified axis.")
|
|
.SetDefault(std::vector<int>{});
|
|
AddAttr<int>("num",
|
|
"(int, default 0)"
|
|
"Number of sub-tensors. This must evenly divide "
|
|
"Input.dims()[axis]")
|
|
.SetDefault(0);
|
|
AddAttr<int>("axis",
|
|
"(int, default 0) "
|
|
"The axis which the input will be split on.")
|
|
.SetDefault(0);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(split, ops::SplitOp, ops::SplitOpMaker,
|
|
ops::SplitGradMaker<paddle::framework::OpDesc>,
|
|
ops::SplitGradMaker<paddle::imperative::OpBase>);
|
|
namespace plat = paddle::platform;
|
|
REGISTER_OP_CPU_KERNEL(
|
|
split, ops::SplitOpKernel<plat::CPUDeviceContext, double>,
|
|
ops::SplitOpKernel<plat::CPUDeviceContext, float>,
|
|
ops::SplitOpKernel<plat::CPUDeviceContext, int64_t>,
|
|
ops::SplitOpKernel<plat::CPUDeviceContext, int>,
|
|
ops::SplitOpKernel<plat::CPUDeviceContext, bool>,
|
|
ops::SplitOpKernel<plat::CPUDeviceContext, plat::float16>);
|