You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
6.8 KiB
170 lines
6.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <cstdio>
|
|
#include <vector>
|
|
#include "cub/cub.cuh"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/top_k_function_cuda.h"
|
|
#include "paddle/fluid/operators/top_k_op.h"
|
|
#include "paddle/fluid/platform/float16.h"
|
|
// set cub base traits in order to handle float16
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
#define FIXED_BLOCK_DIM_BASE(dim, ...) \
|
|
case (dim): { \
|
|
constexpr auto kBlockDim = (dim); \
|
|
__VA_ARGS__; \
|
|
} break
|
|
|
|
#define FIXED_BLOCK_DIM(...) \
|
|
FIXED_BLOCK_DIM_BASE(256, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(128, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(64, ##__VA_ARGS__); \
|
|
FIXED_BLOCK_DIM_BASE(32, ##__VA_ARGS__)
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TopkOpCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_gpu_place(ctx.GetPlace()), true,
|
|
platform::errors::InvalidArgument("It must use CUDAPlace."));
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
auto* indices = ctx.Output<Tensor>("Indices");
|
|
int k = static_cast<int>(ctx.Attr<int>("k"));
|
|
|
|
auto* k_t = ctx.Input<Tensor>("K");
|
|
if (k_t) {
|
|
Tensor k_host;
|
|
framework::TensorCopySync(*k_t, platform::CPUPlace(), &k_host);
|
|
k = k_host.data<int>()[0];
|
|
framework::DDim output_dims = output->dims();
|
|
output_dims[output_dims.size() - 1] = k;
|
|
output->Resize(output_dims);
|
|
indices->Resize(output_dims);
|
|
}
|
|
|
|
const T* input_data = input->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
// FIXME(typhoonzero): data is always converted to type T?
|
|
|
|
framework::DDim inputdims = input->dims();
|
|
const int64_t input_height = framework::product(
|
|
framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
|
|
const int64_t input_width = inputdims[inputdims.size() - 1];
|
|
const auto& dev_ctx = ctx.cuda_device_context();
|
|
if ((input_width <= 1024 || k >= 128 || k == input_width)) {
|
|
if (SortTopk<T>(dev_ctx, input, input_width, input_height, k, output,
|
|
indices)) {
|
|
// Successed, return.
|
|
return;
|
|
} else {
|
|
LOG(INFO) << "TopKOP: Some errors happened when use cub sorting, use "
|
|
"default topk kernel.";
|
|
}
|
|
}
|
|
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
|
if (k > input_width) k = input_width;
|
|
|
|
// NOTE: pass lds and dim same to input width.
|
|
// NOTE: old matrix implementation of stride is different to eigen.
|
|
// TODO(typhoonzero): refine this kernel.
|
|
const int kMaxHeight = 2048;
|
|
int gridx = input_height < kMaxHeight ? input_height : kMaxHeight;
|
|
switch (GetDesiredBlockDim(input_width)) {
|
|
FIXED_BLOCK_DIM(
|
|
KeMatrixTopK<T, 5,
|
|
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
|
|
output_data, k, indices_data, input_data, input_width,
|
|
input_width, static_cast<int>(k), gridx, input_height));
|
|
default:
|
|
PADDLE_THROW(platform::errors::Unavailable(
|
|
"Calculation error occurred in TopK Operator's CUDA Kernel."));
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TopkOpGradCUDAKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
platform::is_gpu_place(context.GetPlace()), true,
|
|
platform::errors::InvalidArgument("It must use CUDAPlace."));
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* out_grad = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* indices = context.Input<Tensor>("Indices");
|
|
auto* x_grad = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
const int64_t* indices_data = indices->data<int64_t>();
|
|
size_t k = indices->dims()[indices->dims().size() - 1];
|
|
|
|
framework::DDim xdims = x->dims();
|
|
const size_t row =
|
|
framework::product(framework::slice_ddim(xdims, 0, xdims.size() - 1));
|
|
const size_t col = xdims[xdims.size() - 1];
|
|
const auto& dev_ctx = context.cuda_device_context();
|
|
const int kMaxHeight = 2048;
|
|
int gridx = row < kMaxHeight ? row : kMaxHeight;
|
|
switch (GetDesiredBlockDim(col)) {
|
|
FIXED_BLOCK_DIM(
|
|
AssignGrad<T, 5,
|
|
kBlockDim><<<gridx, kBlockDim, 0, dev_ctx.stream()>>>(
|
|
x_grad_data, indices_data, out_grad_data, row, col, k));
|
|
default:
|
|
PADDLE_THROW(
|
|
platform::errors::Unavailable("Error occurs when Assign Grad."));
|
|
}
|
|
}
|
|
};
|
|
#undef FIXED_BLOCK_DIM_BASE
|
|
#undef FIXED_BLOCK_DIM
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
top_k,
|
|
paddle::operators::TopkOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
float>,
|
|
paddle::operators::TopkOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
double>,
|
|
paddle::operators::TopkOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int>,
|
|
paddle::operators::TopkOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int64_t>,
|
|
paddle::operators::TopkOpCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
paddle::platform::float16>);
|
|
|
|
REGISTER_OP_CUDA_KERNEL(
|
|
top_k_grad,
|
|
paddle::operators::TopkOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
float>,
|
|
paddle::operators::TopkOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
double>,
|
|
paddle::operators::TopkOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int>,
|
|
paddle::operators::TopkOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
int64_t>,
|
|
paddle::operators::TopkOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
|
|
paddle::platform::float16>);
|