You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
2.3 KiB
66 lines
2.3 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include "paddle/fluid/operators/truncated_gaussian_random_op.h"
|
|
#include <limits>
|
|
#include <random>
|
|
#include "paddle/fluid/framework/generator.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class XPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
float mean = context.Attr<float>("mean");
|
|
float std = context.Attr<float>("std");
|
|
auto* tensor = context.Output<framework::Tensor>("Out");
|
|
T* data = tensor->mutable_data<T>(context.GetPlace());
|
|
|
|
std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
|
|
1.0);
|
|
TruncatedNormal<T> truncated_normal(mean, std);
|
|
int64_t size = tensor->numel();
|
|
|
|
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
|
// TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
|
|
// corresponding XPU device.
|
|
auto engine = framework::GetCPURandomEngine(seed);
|
|
|
|
std::unique_ptr<T[]> data_cpu(new T[size]);
|
|
|
|
for (int64_t i = 0; i < size; ++i) {
|
|
data_cpu[i] = truncated_normal(dist(*engine));
|
|
}
|
|
|
|
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), data,
|
|
platform::CPUPlace(), reinterpret_cast<void*>(data_cpu.get()),
|
|
size * sizeof(T));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_XPU_KERNEL(truncated_gaussian_random,
|
|
ops::XPUTruncatedGaussianRandomKernel<
|
|
paddle::platform::XPUDeviceContext, float>);
|
|
|
|
#endif // PADDLE_WITH_XPU
|