You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
7.6 KiB
192 lines
7.6 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/unique_op.h"
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class UniqueOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "unique");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "unique");
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
if (!ctx->Attrs().Get<bool>("is_sorted")) {
|
|
OP_INOUT_CHECK(ctx->HasOutput("Index"), "Output", "Index", "unique");
|
|
PADDLE_ENFORCE_EQ(in_dims.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"The Input(X) should be 1-D Tensor, "
|
|
"But now the dims of Input(X) is %d.",
|
|
in_dims.size()));
|
|
|
|
ctx->SetOutputDim("Out", {-1});
|
|
ctx->SetOutputDim("Index", in_dims);
|
|
return;
|
|
}
|
|
|
|
bool return_index = ctx->Attrs().Get<bool>("return_index");
|
|
bool return_inverse = ctx->Attrs().Get<bool>("return_inverse");
|
|
bool return_counts = ctx->Attrs().Get<bool>("return_counts");
|
|
auto axis_vec = ctx->Attrs().Get<std::vector<int>>("axis");
|
|
|
|
if (return_index) {
|
|
OP_INOUT_CHECK(ctx->HasOutput("Indices"), "Output", "Indices", "unique");
|
|
}
|
|
if (return_inverse) {
|
|
OP_INOUT_CHECK(ctx->HasOutput("Index"), "Output", "Index", "unique");
|
|
}
|
|
if (return_counts) {
|
|
OP_INOUT_CHECK(ctx->HasOutput("Counts"), "Output", "Counts", "unique");
|
|
}
|
|
|
|
if (axis_vec.empty()) {
|
|
ctx->SetOutputDim("Out", {-1});
|
|
if (return_inverse) {
|
|
ctx->SetOutputDim("Index", {framework::product(in_dims)});
|
|
}
|
|
} else {
|
|
int axis = axis_vec[0];
|
|
if (axis < 0) {
|
|
axis += in_dims.size();
|
|
}
|
|
PADDLE_ENFORCE_LT(
|
|
axis, in_dims.size(),
|
|
platform::errors::InvalidArgument("The axis(%d) should be less than "
|
|
"the dimension size(%d) of x.",
|
|
axis, in_dims.size()));
|
|
auto out_dims = in_dims;
|
|
out_dims[axis] = -1;
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
if (return_inverse) {
|
|
ctx->SetOutputDim("Index", {in_dims[axis]});
|
|
}
|
|
}
|
|
if (return_index) {
|
|
ctx->SetOutputDim("Indices", {-1});
|
|
}
|
|
if (return_counts) {
|
|
ctx->SetOutputDim("Counts", {-1});
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
// Return CPUPlace when Attr("is_sorted") is false. Because it means
|
|
// that fluid.layers.unique is called, but there is no cuda kernel.
|
|
if (!ctx.Attr<bool>("is_sorted")) {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
platform::CPUPlace());
|
|
} else {
|
|
// new version paddle.unique is called.
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
|
|
}
|
|
}
|
|
};
|
|
|
|
class UniqueOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"Input tensor. It should be a 1-D tensor when Attr(is_sorted)"
|
|
" is fasle or a N-D tensor when Attr(is_sorted) is true.");
|
|
AddAttr<int>("dtype", "data type for output index");
|
|
AddOutput("Out", "A unique subsequence for input tensor.");
|
|
AddOutput("Index",
|
|
"Equivalent to inverse in numpy.unique, "
|
|
"the indices for where elements in the original input ended up "
|
|
"in the returned unique tensor.");
|
|
AddOutput(
|
|
"Indices",
|
|
"The indices of the input tensor that result in the unique tensor.")
|
|
.AsDispensable();
|
|
AddOutput("Counts", "The counts for each unique element.").AsDispensable();
|
|
AddAttr<bool>("return_index",
|
|
"If True, also return the indices of the input"
|
|
" tensor that result in the unique Tensor.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>(
|
|
"return_inverse",
|
|
"If True, also return the indices for where elements"
|
|
" in the original input ended up in the returned unique tensor.")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("return_counts",
|
|
"If True, also return the counts for each unique element.")
|
|
.SetDefault(false);
|
|
AddAttr<std::vector<int>>(
|
|
"axis",
|
|
"The axis to apply unique. If None, the input will be flattened.")
|
|
.SetDefault({});
|
|
AddAttr<bool>("is_sorted",
|
|
"If True, the unique elements of X are in ascending order."
|
|
"Otherwise, the unique elements are not sorted.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
1. Return a unique subsequence for 1-D input tensor, and an index tensor
|
|
pointing to this unique subsequence when Attr(is_sorted) is false. This
|
|
means paddle.unique is called.
|
|
|
|
2. Returns the unique elements of X in ascending order when Attr(is_sorted)
|
|
is true. This means fluid.layers.unique is called.
|
|
)DOC");
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_WITHOUT_GRADIENT(unique, ops::UniqueOp, ops::UniqueOpMaker);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
unique, ops::UniqueKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::UniqueKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::UniqueKernel<paddle::platform::CPUDeviceContext, int32_t>,
|
|
ops::UniqueKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_VERSION(unique)
|
|
.AddCheckpoint(
|
|
R"ROC(
|
|
Upgrade unique, add 2 outputs [Indices, Counts] and 5 attribute
|
|
[return_index, return_inverse, return_counts, axis, is_sorted].
|
|
)ROC",
|
|
paddle::framework::compatible::OpVersionDesc()
|
|
.NewOutput("Indices",
|
|
"The indices of the input tensor that result in the "
|
|
"unique tensor.")
|
|
.NewOutput("Counts", "The counts for each unique element.")
|
|
.NewAttr("return_index",
|
|
"If True, also return the indices of the input"
|
|
" tensor that result in the unique Tensor.",
|
|
false)
|
|
.NewAttr("return_inverse",
|
|
"If True, also return the indices for where elements"
|
|
" in the original input ended up in the returned unique "
|
|
"tensor.",
|
|
false)
|
|
.NewAttr("return_counts",
|
|
"If True, also return the counts for each unique element.",
|
|
false)
|
|
.NewAttr("axis",
|
|
"The axis to apply unique. If None, the input will be "
|
|
"flattened.",
|
|
std::vector<int>{})
|
|
.NewAttr("is_sorted",
|
|
"If True, the unique elements of X are in ascending order."
|
|
"Otherwise, the unique elements are not sorted.",
|
|
false));
|