You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
4.6 KiB
117 lines
4.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/bilinear_interp_op.h"
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
|
|
class BilinearInterpOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of BilinearInterOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of BilinearInterOp should not be null.");
|
|
|
|
auto dim_x = ctx->GetInputDim("X"); // NCHW format
|
|
int out_h = ctx->Attrs().Get<int>("out_h");
|
|
int out_w = ctx->Attrs().Get<int>("out_w");
|
|
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");
|
|
|
|
if (ctx->HasInput("OutSize")) {
|
|
auto out_size_dim = ctx->GetInputDim("OutSize");
|
|
PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
|
|
"OutSize's dimension size must be 1");
|
|
PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
|
|
}
|
|
std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
|
|
ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
class BilinearInterpOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"The input tensor of bilinear interpolation, "
|
|
"This is a 4-D tensor with shape of (N x C x h x w)");
|
|
AddInput("OutSize",
|
|
"This is a 1-D tensor with two number. "
|
|
"The first number is height and the second number is width.")
|
|
.AsDispensable();
|
|
AddOutput("Out", "The dimension of output is (N x C x out_h x out_w)");
|
|
|
|
AddAttr<int>("out_h", "output height of bilinear interpolation op.");
|
|
AddAttr<int>("out_w", "output width of bilinear interpolation op.");
|
|
AddComment(R"DOC(
|
|
Bilinear interpolation is an extension of linear interpolation for
|
|
interpolating functions of two variables (e.g. H-direction and
|
|
W-direction in this op) on a rectilinear 2D grid.
|
|
|
|
The key idea is to perform linear interpolation first in one
|
|
direction, and then again in the other direction.
|
|
|
|
For details, please refer to Wikipedia:
|
|
https://en.wikipedia.org/wiki/Bilinear_interpolation
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class BilinearInterpOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
protected:
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null");
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
|
}
|
|
}
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(bilinear_interp, ops::BilinearInterpOp,
|
|
ops::BilinearInterpOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
REGISTER_OPERATOR(bilinear_interp_grad, ops::BilinearInterpOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::BilinearInterpKernel<float>,
|
|
ops::BilinearInterpKernel<uint8_t>);
|
|
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad,
|
|
ops::BilinearInterpGradKernel<float>);
|