You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
6.2 KiB
166 lines
6.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/operators/elementwise_op.h"
|
|
#include "paddle/fluid/operators/elementwise_op_function.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename T>
|
|
struct AddFunctor {
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
void default_elementwise_add(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x,
|
|
const framework::Tensor* y, framework::Tensor* z) {
|
|
int axis = ctx.Attr<int>("axis");
|
|
ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
|
|
AddFunctor<T>(), z);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
std::is_floating_point<T>::value &&
|
|
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_add(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z) {
|
|
auto eigen_x = framework::EigenVector<T>::Flatten(*x);
|
|
auto eigen_y = framework::EigenVector<T>::Flatten(*y);
|
|
auto eigen_z = framework::EigenVector<T>::Flatten(*z);
|
|
|
|
auto blas = math::GetBlas<DeviceContext, T>(ctx);
|
|
blas.VADD(x->numel(), eigen_x.data(), eigen_y.data(), eigen_z.data());
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
!std::is_floating_point<T>::value ||
|
|
!std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_add(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
framework::Tensor* z) {
|
|
default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseAddKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
using Tensor = framework::Tensor;
|
|
|
|
const auto x = ctx.Input<Tensor>("X");
|
|
const auto y = ctx.Input<Tensor>("Y");
|
|
auto z = ctx.Output<Tensor>("Out");
|
|
z->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto dims_equal = x->dims() == y->dims();
|
|
if (dims_equal) {
|
|
elementwise_add<DeviceContext, T>(ctx, x, y, z);
|
|
} else {
|
|
default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct IdentityGrad {
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
void default_elementwise_add_grad(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x,
|
|
const framework::Tensor* y,
|
|
const framework::Tensor* out,
|
|
const framework::Tensor* dout,
|
|
framework::Tensor* dx,
|
|
framework::Tensor* dy) {
|
|
int axis = ctx.Attr<int>("axis");
|
|
|
|
ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
|
|
IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
|
|
dx, dy, IdentityGrad<T>(),
|
|
IdentityGrad<T>());
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
std::is_floating_point<T>::value &&
|
|
std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_add_grad(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
const framework::Tensor* out,
|
|
const framework::Tensor* dout, framework::Tensor* dx,
|
|
framework::Tensor* dy) {
|
|
auto blas = math::GetBlas<DeviceContext, T>(ctx);
|
|
|
|
if (dx) {
|
|
blas.VCOPY(dout->numel(), dout->data<T>(),
|
|
dx->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
|
|
if (dy) {
|
|
blas.VCOPY(dout->numel(), dout->data<T>(),
|
|
dy->mutable_data<T>(ctx.GetPlace()));
|
|
}
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
typename std::enable_if<
|
|
!std::is_floating_point<T>::value ||
|
|
!std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
|
|
elementwise_add_grad(const framework::ExecutionContext& ctx,
|
|
const framework::Tensor* x, const framework::Tensor* y,
|
|
const framework::Tensor* out,
|
|
const framework::Tensor* dout, framework::Tensor* dx,
|
|
framework::Tensor* dy) {
|
|
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
|
|
}
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
ElemwiseGradKernel<T>::Compute(ctx);
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
// skip out, x, y
|
|
auto* out = dout;
|
|
auto *x = dout, *y = dout;
|
|
|
|
if (platform::is_cpu_place(ctx.GetPlace()) && dx != nullptr &&
|
|
dy != nullptr && (dx->dims() == dy->dims())) {
|
|
elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
|
|
} else {
|
|
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
|
|
dy);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|