You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
376 lines
16 KiB
376 lines
16 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/pool_op.h"
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::DataLayout;
|
|
using mkldnn::memory;
|
|
using mkldnn::pooling_backward;
|
|
using mkldnn::pooling_forward;
|
|
using mkldnn::primitive;
|
|
using mkldnn::reorder;
|
|
using mkldnn::stream;
|
|
using platform::to_void_cast;
|
|
|
|
// Generate keys for storing/retriving primitives for this operator
|
|
// TODO(jczaja): Make hashing function more optimial
|
|
static std::string gethash(const memory::dims& input_dims,
|
|
const std::string& pooling_type,
|
|
const std::vector<int>& ksize,
|
|
const std::vector<int>& strides,
|
|
const std::vector<int>& paddings,
|
|
const std::string& suffix) {
|
|
auto dims2str = [](const memory::dims& operand_dims) {
|
|
std::string dstr = "";
|
|
for (size_t i = 0; i < operand_dims.size(); ++i) {
|
|
dstr += std::to_string(operand_dims[i]) + "-";
|
|
}
|
|
return dstr;
|
|
};
|
|
return dims2str(input_dims) + dims2str(ksize) + dims2str(strides) +
|
|
dims2str(paddings) + pooling_type + suffix;
|
|
}
|
|
|
|
template <typename T>
|
|
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const auto& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
const Tensor* input = ctx.Input<Tensor>("X");
|
|
Tensor* output = ctx.Output<Tensor>("Out");
|
|
|
|
PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
|
|
input->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Input tensor");
|
|
|
|
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
if (ctx.Attr<bool>("global_pooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(input->dims()[i + 2]);
|
|
}
|
|
}
|
|
|
|
// Only 2D pooling is supported now
|
|
PADDLE_ENFORCE(ksize.size() == 2, "ksize must be 2D, i.e. 2D pooling");
|
|
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg",
|
|
"pooling_type must be 'max' or 'avg'");
|
|
PADDLE_ENFORCE(input->dims().size() == 4,
|
|
"Input dim must be with 4, i.e. NCHW");
|
|
|
|
const T* input_data = input->data<T>();
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
|
|
|
auto input_format = input->format();
|
|
memory::format output_format{memory::format::format_undef};
|
|
|
|
const std::string key = gethash(src_tz, pooling_type, ksize, strides,
|
|
paddings, ctx.op().Output("Out"));
|
|
const std::string key_pool_p = key + "@pool_p";
|
|
const std::string key_pool_pd = key + "@pool_pd";
|
|
const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
|
|
const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
|
|
const std::string key_pool_workspace_memory =
|
|
key + "@pool_workspace_memory";
|
|
|
|
auto pool_p =
|
|
std::static_pointer_cast<pooling_forward>(dev_ctx.GetBlob(key_pool_p));
|
|
if (pool_p == nullptr) {
|
|
auto src_md = platform::MKLDNNMemDesc(
|
|
src_tz, platform::MKLDNNGetDataType<T>(), input_format);
|
|
|
|
/* create memory descriptor for pooling without specified format
|
|
* ('any') which lets a primitive (pooling in this case) choose
|
|
* the memory format preferred for best performance
|
|
*/
|
|
auto dst_md = platform::MKLDNNMemDesc(dst_tz, mkldnn::memory::f32,
|
|
mkldnn::memory::format::any);
|
|
|
|
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd =
|
|
CreatePrimitiveDesc(src_md, dst_md, strides, paddings, ksize,
|
|
pooling_type, mkldnn_engine);
|
|
|
|
// save pool_pd into global device context to be referred in backward path
|
|
dev_ctx.SetBlob(key_pool_pd, pool_pd);
|
|
|
|
std::shared_ptr<mkldnn::memory> workspace_memory =
|
|
CreateWorkspaceMemory(pool_pd, pooling_type, mkldnn_engine);
|
|
|
|
// save pool_workspace_memory to be referred in backward path
|
|
dev_ctx.SetBlob(key_pool_workspace_memory, workspace_memory);
|
|
|
|
auto src_memory = std::make_shared<memory>(pool_pd->src_primitive_desc(),
|
|
to_void_cast<T>(input_data));
|
|
auto dst_memory =
|
|
std::make_shared<memory>(pool_pd->dst_primitive_desc(), output_data);
|
|
|
|
dev_ctx.SetBlob(key_pool_src_mem_p, src_memory);
|
|
dev_ctx.SetBlob(key_pool_dst_mem_p, dst_memory);
|
|
|
|
pool_p = std::make_shared<pooling_forward>(*pool_pd, *(src_memory.get()),
|
|
*(dst_memory.get()),
|
|
*workspace_memory);
|
|
|
|
dev_ctx.SetBlob(key_pool_p, pool_p);
|
|
|
|
output_format =
|
|
(memory::format)dst_memory->get_primitive_desc().desc().data.format;
|
|
} else {
|
|
// Primitives already exist
|
|
auto pool_src_memory_p =
|
|
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
|
|
PADDLE_ENFORCE(pool_src_memory_p != nullptr,
|
|
"Fail to find pooling src mem_p in device context");
|
|
auto pool_dst_memory_p =
|
|
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
|
|
PADDLE_ENFORCE(pool_dst_memory_p != nullptr,
|
|
"Fail to find pooling dst mem_p in device context");
|
|
pool_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
|
|
pool_dst_memory_p->set_data_handle(output_data);
|
|
|
|
output_format = (memory::format)pool_dst_memory_p->get_primitive_desc()
|
|
.desc()
|
|
.data.format;
|
|
}
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
std::vector<mkldnn::primitive> pipeline{*(pool_p.get())};
|
|
stream(stream::kind::eager).submit(pipeline).wait();
|
|
|
|
output->set_layout(DataLayout::kMKLDNN);
|
|
output->set_format(output_format);
|
|
}
|
|
|
|
private:
|
|
std::unique_ptr<mkldnn::pooling_forward::primitive_desc> CreatePrimitiveDesc(
|
|
const mkldnn::memory::desc& src, const mkldnn::memory::desc& dst,
|
|
const std::vector<int>& stride, const std::vector<int>& padding,
|
|
const std::vector<int>& kernel, const std::string& pooling_type,
|
|
const mkldnn::engine& engine) const {
|
|
auto pool_desc = mkldnn::pooling_forward::desc(
|
|
mkldnn::prop_kind::forward,
|
|
pooling_type == "max" ? mkldnn::algorithm::pooling_max
|
|
: mkldnn::algorithm::pooling_avg,
|
|
src, dst, stride, kernel, padding, padding, mkldnn::padding_kind::zero);
|
|
|
|
auto p_pool_pd =
|
|
new mkldnn::pooling_forward::primitive_desc(pool_desc, engine);
|
|
return std::unique_ptr<mkldnn::pooling_forward::primitive_desc>(p_pool_pd);
|
|
}
|
|
|
|
std::unique_ptr<mkldnn::memory> CreateWorkspaceMemory(
|
|
std::shared_ptr<mkldnn::pooling_forward::primitive_desc> pool_pd,
|
|
const std::string& pooling_type, const mkldnn::engine& engine) const {
|
|
mkldnn::memory::primitive_desc workspace_md =
|
|
pooling_type == "max"
|
|
? pool_pd->workspace_primitive_desc()
|
|
: mkldnn::memory::primitive_desc({{},
|
|
platform::MKLDNNGetDataType<T>(),
|
|
mkldnn::memory::format::nchw},
|
|
engine);
|
|
|
|
auto p_workspace_memory = new mkldnn::memory(workspace_md);
|
|
return std::unique_ptr<mkldnn::memory>(p_workspace_memory);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
"It must use CPUPlace.");
|
|
|
|
const Tensor* in_x = ctx.Input<Tensor>("X");
|
|
const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
PADDLE_ENFORCE(in_x->layout() == DataLayout::kMKLDNN &&
|
|
in_x->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Input X tensor");
|
|
PADDLE_ENFORCE(out_grad->layout() == DataLayout::kMKLDNN &&
|
|
out_grad->format() != memory::format::format_undef,
|
|
"Wrong layout/format set for Input output_grad tensor");
|
|
|
|
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
|
|
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
|
|
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
|
|
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
|
|
|
|
if (ctx.Attr<bool>("global_pooling")) {
|
|
for (size_t i = 0; i < ksize.size(); ++i) {
|
|
paddings[i] = 0;
|
|
ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
|
|
}
|
|
}
|
|
|
|
auto& dev_ctx =
|
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
|
const mkldnn::engine& mkldnn_engine = dev_ctx.GetEngine();
|
|
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
T* in_x_grad_data = in_x_grad->mutable_data<T>(ctx.GetPlace());
|
|
memory::format in_x_grad_format{memory::format::format_undef};
|
|
|
|
std::vector<int> diff_src_tz =
|
|
paddle::framework::vectorize2int(in_x_grad->dims());
|
|
std::vector<int> diff_dst_tz =
|
|
paddle::framework::vectorize2int(out_grad->dims());
|
|
|
|
// Get an unique name from "argument" name of "Out" variable
|
|
// This name will be used as key when referring info from device context
|
|
const std::string key = gethash(diff_src_tz, pooling_type, ksize, strides,
|
|
paddings, ctx.op().Input("Out"));
|
|
const std::string key_pool_bwd_p = key + "@pool_bwd_p";
|
|
const std::string key_pool_diff_src_mem_p = key + "@pool_diff_src_mem_p";
|
|
const std::string key_pool_diff_dst_mem_p = key + "@pool_diff_dst_mem_p";
|
|
const std::string key_pool_src_mem_p = key + "@pool_src_mem_p";
|
|
const std::string key_pool_dst_mem_p = key + "@pool_dst_mem_p";
|
|
const std::string key_pool_pd = key + "@pool_pd";
|
|
const std::string key_pool_workspace_memory =
|
|
key + "@pool_workspace_memory";
|
|
|
|
auto user_diff_dst_memory =
|
|
memory({{{diff_dst_tz}, memory::data_type::f32, out_grad->format()},
|
|
mkldnn_engine},
|
|
to_void_cast<T>(out_grad_data));
|
|
|
|
std::shared_ptr<memory> diff_src_memory;
|
|
std::shared_ptr<memory> diff_dst_memory;
|
|
auto dst_memory =
|
|
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_dst_mem_p));
|
|
PADDLE_ENFORCE(dst_memory != nullptr,
|
|
"Fail to find dst_memory in device context");
|
|
|
|
primitive reorder_diff_dst;
|
|
bool is_diff_dst_reordered = false;
|
|
auto pool_bwd_p = std::static_pointer_cast<pooling_backward>(
|
|
dev_ctx.GetBlob(key_pool_bwd_p));
|
|
if (pool_bwd_p == nullptr) {
|
|
// Retrieve src_memory/dst_memory saved in forward pass
|
|
auto src_memory =
|
|
std::static_pointer_cast<memory>(dev_ctx.GetBlob(key_pool_src_mem_p));
|
|
PADDLE_ENFORCE(src_memory != nullptr,
|
|
"Fail to find src_memory in device context");
|
|
// Retrieve pool_pd/pool_workspace_memory from device context
|
|
auto pool_pd =
|
|
std::static_pointer_cast<mkldnn::pooling_forward::primitive_desc>(
|
|
dev_ctx.GetBlob(key_pool_pd));
|
|
PADDLE_ENFORCE(pool_pd != nullptr,
|
|
"Fail to find pool_pd in device context");
|
|
auto workspace_memory = std::static_pointer_cast<memory>(
|
|
dev_ctx.GetBlob(key_pool_workspace_memory));
|
|
PADDLE_ENFORCE(workspace_memory != nullptr,
|
|
"Fail to find workspace_memory in device context");
|
|
|
|
// create memory descriptors for pooling
|
|
auto diff_src_md = src_memory.get()->get_primitive_desc().desc();
|
|
auto diff_dst_md = dst_memory.get()->get_primitive_desc().desc();
|
|
|
|
auto pool_bwd_desc = mkldnn::pooling_backward::desc(
|
|
pooling_type == "max" ? mkldnn::algorithm::pooling_max
|
|
: mkldnn::algorithm::pooling_avg,
|
|
diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
|
|
mkldnn::padding_kind::zero);
|
|
auto pool_bwd_pd = mkldnn::pooling_backward::primitive_desc(
|
|
pool_bwd_desc, mkldnn_engine, *pool_pd);
|
|
|
|
// reorder between user_diff_dst and pool diff_dst if needed
|
|
diff_dst_memory = std::make_shared<memory>(user_diff_dst_memory);
|
|
if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
|
|
user_diff_dst_memory.get_primitive_desc()) {
|
|
diff_dst_memory =
|
|
std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
|
|
reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
|
|
is_diff_dst_reordered = true;
|
|
}
|
|
|
|
diff_src_memory = std::make_shared<memory>(
|
|
pool_bwd_pd.diff_src_primitive_desc(), in_x_grad_data);
|
|
|
|
dev_ctx.SetBlob(key_pool_diff_src_mem_p, diff_src_memory);
|
|
dev_ctx.SetBlob(key_pool_diff_dst_mem_p, diff_dst_memory);
|
|
|
|
pool_bwd_p = std::make_shared<pooling_backward>(
|
|
pool_bwd_pd, *(diff_dst_memory.get()), *workspace_memory,
|
|
*(diff_src_memory));
|
|
dev_ctx.SetBlob(key_pool_bwd_p, pool_bwd_p);
|
|
|
|
} else {
|
|
// Primitives already exist
|
|
diff_src_memory = std::static_pointer_cast<memory>(
|
|
dev_ctx.GetBlob(key_pool_diff_src_mem_p));
|
|
PADDLE_ENFORCE(diff_src_memory != nullptr,
|
|
"Fail to find pooling src mem_p in device context");
|
|
diff_dst_memory = std::static_pointer_cast<memory>(
|
|
dev_ctx.GetBlob(key_pool_diff_dst_mem_p));
|
|
PADDLE_ENFORCE(diff_dst_memory != nullptr,
|
|
"Fail to find pooling dst mem_p in device context");
|
|
|
|
diff_src_memory->set_data_handle(reinterpret_cast<void*>(in_x_grad_data));
|
|
diff_dst_memory->set_data_handle(const_cast<T*>(out_grad_data));
|
|
|
|
// reorder between user_diff_dst and pool diff_dst if needed
|
|
if (memory::primitive_desc(dst_memory->get_primitive_desc()) !=
|
|
user_diff_dst_memory.get_primitive_desc()) {
|
|
diff_dst_memory =
|
|
std::make_shared<memory>(dst_memory.get()->get_primitive_desc());
|
|
reorder_diff_dst = reorder(user_diff_dst_memory, *diff_dst_memory);
|
|
is_diff_dst_reordered = true;
|
|
}
|
|
}
|
|
|
|
in_x_grad_format = (memory::format)diff_src_memory->get_primitive_desc()
|
|
.desc()
|
|
.data.format;
|
|
|
|
// push primitive to stream and wait until it's executed
|
|
std::vector<mkldnn::primitive> pipeline;
|
|
if (is_diff_dst_reordered) {
|
|
pipeline.push_back(reorder_diff_dst);
|
|
}
|
|
pipeline.push_back(*(pool_bwd_p.get()));
|
|
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
|
|
|
|
in_x_grad->set_layout(DataLayout::kMKLDNN);
|
|
in_x_grad->set_format(in_x_grad_format);
|
|
} // Compute()
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::PoolMKLDNNOpKernel<float>);
|
|
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
|
|
ops::PoolMKLDNNGradOpKernel<float>);
|